Advertisement

High Performance Fibers

  • Louis A. Pilato
  • Michael J. Michno
Chapter

Abstract

Structural materials based on ACM require strength, stiffness and toughness in conjunction with high temperature and environmental resistance. Strength and stiffness characteristics are attributable to the fiber or reinforcing agent. Only those fibers which possess very high strength and very high modulus or stiffness with moderately low density are suitable candidates as reinforcing agents in ACM. Specific modulus (normalized by fiber density) values of at least 6 × 108 cm and specific strength (normalized by fiber density) values of 6 × 106 cm are the guidelines for these high strength fibers. These include ultra high molecular weight polyethylene (UHMWPE), aramids, carbon fiber, S-2 glass, and newly reported experimental fibers, PBO and PBT. Although the specific modulus of S-2 glass is below 6 × 108 cm or only 4 × 108 cm, the specific strength of S-2 glass is 18 × 106 cm and sufficiently high to merit consideration as a high performance fiber. The high performance fibers that dominate the ACM area possess low density (950–2500 kg/m3) and extremely high strengths (2–7 GPa) and moduli (70–800 GPa).

Keywords

Compressive Strength Carbon Fiber Ultra High Molecular Weight Polyethylene Aramid Fiber Graphite Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. S. Matsuda, Chem. Tech. (May) 310 (1988).Google Scholar
  2. 2.
    S. Kumar, SAMPE Quart. 20(2), 3 (1989).Google Scholar
  3. 3.
    W. W. Adams, Poly. Preprints, 26(2), 306 (1985).Google Scholar
  4. 4.
    J. J. Smith, H. Jiang, R. K. Eby and W. W. Adams, Poly. Commun. 28, 14 (1987).Google Scholar
  5. 5.
    Y. Tremonia and P. Smith, Chapter 11, in “High Modulus Polymers,” A. E. Zachariades and R. S. Porter, editors, Marcel Dekker, NY 1988.Google Scholar
  6. 6.
    T. Y. Tarn, M. B. Boone and G. C. Weedon, Poly. Eng. & Sci. 28(13), 871 (1988).CrossRefGoogle Scholar
  7. 7.
    A. J. Pennings et al., in “Interrelations Between Processing, Structure, and Properties of Polymeric Materials,” J. C. Seferis and P. S. Theocaris, editors, p. 285 Elsevier, Oxford 1984.Google Scholar
  8. 8.
    Polymer News, 14(3), 83 (1989).Google Scholar
  9. 9.
    J. H. Southern and R. S. Porter, J. Appl. Poly. Sci., 14, 2305 (1970).CrossRefGoogle Scholar
  10. 10.
    G. Capaccio and I. M. Ward, Poly. Eng. Sci., 15, 219 (1975).CrossRefGoogle Scholar
  11. 11.
    W. Hoogsteen, G. ten Brinke and A. J. Pennings, Colloid Polym. Sci., 266, 1003 (1988).CrossRefGoogle Scholar
  12. 12.
    J. P. Cohen-Addad, G. Feio and A. Peguy, Poly. Commun. 28, 252 (1987).Google Scholar
  13. 13.
    M. Matusuo et al., Poly. J. 18(10), 759 (1986).CrossRefGoogle Scholar
  14. 14.
    R. J. Samuels, J. Macromol. Sci.-Phys. B4 701 (1970).Google Scholar
  15. 15.
    Y. D. Kwon, S. Kavesh and D. C. Prevorsek, U.S. 4,713,290 (12/15/87) Allied.Google Scholar
  16. 16.
    G. A. Harpell, I. Palley, S. Kavesh and D. C. Prevorsek, U.S. 4,737,401 (4/12/88) Allied.Google Scholar
  17. 17.
    D. J. Dijkstra, W. Hoogsteen and A. J. Penning, Polymer 30, 866 (1989).Google Scholar
  18. 18.
    G. B. Kaufman, Chem. Tech. 725 Dec. (1988).Google Scholar
  19. 19.
    M. Jaffe and R. S. Jones, “Handbook of Fiber Science and Technology,” Vol III, High Technology Fibers, Part A, Marcel Dekker, NY. 1985.Google Scholar
  20. 20.
    L. Vollbracht, Chapter 22 in “Comprehensive Polymer Science,” Vol 5, Sir G. Allen, J. C. Bevington, editors, Pergmon, Oxford 1989.Google Scholar
  21. 21.
    H. H. Yang, “Aramid Fibers,” Chapter 6, in “Composite Materials,” Series 2, Fiber Reinforcements for Composite Materials, R. Bunsell, editor, Elsevier, Amsterdam 1988.Google Scholar
  22. 22.
    H. Blades, 3,869,429 (1975) Dupont.Google Scholar
  23. 23.
    P. G. Riewald, A. K. Dhingra and T. S. Chern, 6th Int’l Conf. on Comp. Materials and 2nd European Conf. on Com. Mat. Vol 5, Editors, F. L. Matthews. N. C. R. Buskell, J. M. Hodgkinson and J. Morton, Elsevier, London 1987, p. 362.Google Scholar
  24. 24.
    M. Fukuda, H. Kawai, F. Harii and R. Kitamaru, Poly. Commum. 29, 97 (1988).Google Scholar
  25. 25.
    D. Tanner, J. A. Fitzgerald, P. G. Riewald and W. F. Knoff, Handbook of Fibers. Science and Technology, Vol. III, High Technology Fibers, Part B, Marcel Dekker, NY 1989.Google Scholar
  26. 26.
    C. D. Batich, P. H. Holloway and M. A. Kosinski, CHEMTECH, Aug. p. 494, 1986.Google Scholar
  27. 27.
    F. Druschle, H. W. Siesler, G. Spilgies and H. Tengler. Poly. Sci. Eng, 17(2), 93 (1977).CrossRefGoogle Scholar
  28. 28.
    E. G. Chatzi, M. W. Urban, H. Ishida and J. L. Koenig, Polymer 27, 1850 (1986).CrossRefGoogle Scholar
  29. 29.
    C. E. Morrison and W. H. Bowyer, “Proceedings of the 3rd National Conference on Composite Materials,” Paris, France August 26–9, 1980, pp. 233-245.Google Scholar
  30. 30.
    M. W. Wardle and E. W. Tokarsky, Comp. Technol. Rev. ASTM, Philadelphia, Spring 1983.Google Scholar
  31. 31.
    W. Watt and B. V. Perov, Strong Fibers, Handbook of Composites, Vol 1, Elsevier Science, 1985.Google Scholar
  32. 32.
    D. Pamington, (editor) Carbon & High Performance Fibers Directory — 3rd edition, PAMMAC Directories.Google Scholar
  33. 33.
    R. Bacon and C. T. Moses, High Performance Polymers: Their Origin and Development, Proceedings of a Symp. held at 191st ACS meeting, New York, NY, April 15–18, 1986, pp. 341-353.Google Scholar
  34. 34.
    E. Fitzer, editor, “Carbon Fibers and their Composites,” Springer, Berlin Heidelberg New York (1984).Google Scholar
  35. 35.
    Amoco Performance Products, Inc., Product Literature F7238, 1989.Google Scholar
  36. 36.
    M. K. Towne, Proceedings of the 7th JANNAF Rocket Nozzel Technology Subcommittee Meeting, Naval Postgraduate School, Monterey, CA, Nov. 12–14, 1985. Available from CPIA, Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20707.Google Scholar
  37. 37.
    M. K. Towne, Proceedings of the 7th JANNAF Rocket Nozzel Technology Subcommittee Meeting, Naval Postgraduate School, Monterey, CA, Nov. 12–14, 1985. Available from CPIA, Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20707.Google Scholar
  38. 38.
    M. K. Towne, “Quality and Product Improvements on Rayon-Based Carbon and Graphite Fabrics,” Proceedings of the 7th JANNAF Rocket Nozzel Technology Subcommittee Meeting, Naval Postgraduate School, Monterey, CA, Oct. 19–22, 1982.Google Scholar
  39. 39.
    J. M. Prandy and H. T. Hahn, 35 International SAMPE, April 1990, p. 1157.Google Scholar
  40. 40.
    D. A. Schulz, SAMPE Journal, 23:27-31, 109 (March/April, 1987).Google Scholar
  41. 41.
    R. Bacon, Metal and Ceramic Matrix Composite Processing Conference Proceedings, Battelle, Columbus Laboratories, Nov. 13–15, 1984, Vol. 2, pp. 23–28.Google Scholar
  42. 42.
    L. S. Singer, Extended Abstracts of the International Symp. on Carbon: New Processing and New Applications, Toyohashi, Japan, November, 1982, Paper 4A01, pp. 400-403.Google Scholar
  43. 43.
    L. S. Singer, Fuel, 60:839–847, Sept, 1981.CrossRefGoogle Scholar
  44. 44.
    R. Bacon, Phil. Trans. Royal Soc. (London) A, 294:437–442. (1979).CrossRefGoogle Scholar
  45. 45.
    L. S. Singer, A. Ciferri and I. M. Ward, Applied Science, 1979, pp. 251-277.Google Scholar
  46. 46.
    A. A. Bright and L. S. Singer, Carbon, 17:59–69 (No. 1, 1979).CrossRefGoogle Scholar
  47. 47.
    S. Chwastiak, J. B. Barr and R. Didchenko, Carbon, 17:49–53, 1979.CrossRefGoogle Scholar
  48. 48.
    J. B. Barr, I. C. Lewis, Thermochim. Acta, 52:297–304, Jan 16, 1982.CrossRefGoogle Scholar
  49. 49.
    F. F. Nazem, Pitch, Fuel, 80:851-858.Google Scholar
  50. 50.
    R. Bacon, B. H. Eckstein, I. M. Kowalski, D. A. Schulz, S. L. Strong, M. K. Towne and G. Wagoner, Proceedings of the First European Conference on Composite Materials and Exhibition European Association for Composite Materials, Bordeaux, France, Sept, 25–27, 1985, pp. 152-157.Google Scholar
  51. 51.
    Amoco Performance Products, Inc., Product Literature, F-5869 Rev. 6, F-7144, F-7145, F-7146, F-7149, 1988.Google Scholar
  52. 52.
    K. Morita et al., Pure and Applied Chem. 58(3), 455 (1986).CrossRefGoogle Scholar
  53. 53.
    I. M. Kowalski, Anaheim, CA, April 6–9, 1987, pp. 953-963.Google Scholar
  54. 54.
    M. Guigon and A. Oberlin, Composites Science & Technology 27(1), (1986).Google Scholar
  55. 55.
    S. B. Smith, 34th International SAMPE Conf. May 1989, p. 1621.Google Scholar
  56. 56.
    G. Wagoner and R. Bacon, Proceedings of the 19th Biennial Carbon Conference, Penn State University, June 26–30, 1989, pp. 296-297.Google Scholar
  57. 57.
    G. Wagoner, R. E. Smith and R. Bacon, Proceedings of the 18th Biennial Conference on Carbon, Worcester, MA, July 19–24, 1987, pp. 415-416.Google Scholar
  58. 58.
    I. M. Kowalski, 31st International SAMPE Symp. and Exhibition, Las Vegas, Nevada, April 7–10, 1986, pp. 303-314.Google Scholar
  59. 59.
    J. B. Barr and B. H. Eckstein, Proceedings of the 18th Biennial Conference on Carbon, Worcester, MA, July 19–24, 1987, pp. 9-10.Google Scholar
  60. 60.
    Amoco Performance Products, Inc., Product Literature, F-7147, F-7178, F-7150, 1988.Google Scholar
  61. 61.
    D. Miller, “Glass Fibers” in “Composites,” Vol 1, ASM International, 1987.Google Scholar
  62. 62.
    R. W. Fulmer, SAMPE, May 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Louis A. Pilato
    • 1
  • Michael J. Michno
    • 2
  1. 1.Bound BrookUSA
  2. 2.Amoco Performance Products Inc.AtlantaUSA

Personalised recommendations