Nephrology pp 135-149 | Cite as

Osmolytes and Cell Osmoregulation in the Kidney

  • F. X. Beck
  • K. Thurau
  • M. Schmolke
  • W. G. Guder

Summary

The cells of the renal papilla are subject to widely varying extracellular osmolalities. In antidiuresis these cells are surrounded by hypertonic fluids, while in diuresis interstitial solute concentrations decline to levels comparable to those of the renal cortex. Papillary cells adapt to these extreme variations in extracellular tonicity by modulating the intracellular concentrations of small organic osmoeffectors (osmolytes), such as trimethylamines (glycerophosphorylcholine, betaine) and polyols (sorbitol, inositol). Variations in the intracellular concentrations of these osmolytes are accomplished by transmembrane net movement of water (cell swelling or shrinkage), by regulation of release and/or uptake of osmoeffectors via specific transmembrane transport pathways, and by changes in the intracellular synthesis of these organic compounds. These adaptive mechanisms allow intracellular electrolyte concentrations to remain relatively constant, despite extreme fluctuations in extracellular salinities. Accumulation of nonperturbing, organic osmolytes rather than inorganic electrolytes at high extracellular tonicities avoids the deleterious effects of elevated electrolyte concentrations on intracellular macromolecules. In addition, some of these osmolytes (trimethylamines) are assumed to counteract the adverse effects of high urea concentrations on the structure and function of cell proteins.

Keywords

Urea Shrinkage Proline Fructose Choline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beck FX, Dörge A, Thurau K (1988) Cellular osmoregulation in renal medulla. Renal Physiol Biochem 11: 174–186PubMedGoogle Scholar
  2. 2.
    Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222PubMedCrossRefGoogle Scholar
  3. 3.
    Beck F, Dörge A, Rick R, Thurau K (1984) Intra-and extracellular element concentrations of rat renal papilla in antidiuresis. Kidney Int 25: 397–403PubMedCrossRefGoogle Scholar
  4. 4.
    Beck F, Dörge A, Rick R, Thurau K (1985) Osmoregulation of renal papillary cells. Pflügers Arch 405: S28 - S32PubMedCrossRefGoogle Scholar
  5. 5.
    Dantzler WH, Silbernagl S (1988) Amino acid transport by juxtamedullary nephrons: distal reabsorption and recycling. Am J Physiol 255: F397 - F407PubMedGoogle Scholar
  6. 6.
    Law RO, Turner DPJ (1987) Are ninhydrin-positive substances volume-regulatory osmolytes in rat renal papillary cells? J Physiol 386: 45–61PubMedGoogle Scholar
  7. 7.
    Gullans SR, Blumenfeld JD, Balschi JA, Kaleta M, Brenner RM, Heilig CW, Hebert SC (1988) Accumulation of major organic osmolytes in rat renal inner medulla in dehydration. Am J Physiol 255: F626 - F634PubMedGoogle Scholar
  8. 8.
    Schimassek H, Kohl D, Bücher T (1959) Glycerylphosphorylcholine, die Nierensubstanz “Ma-Mark” von Ullrich. Biochem Z 331: 87–97Google Scholar
  9. 9.
    Wirthensohn G, Beck FX, Guder WG (1987) Role and regulation of glycerophosphorylcholine in rat renal papilla. Pflügers Arch 409: 411–415PubMedCrossRefGoogle Scholar
  10. 10.
    Wirthensohn G, Lefrank S, Guder WG, Beck FX (1987) Studies on the role of glycerophosphorylcholine and sorbitol in renal osmoregulation. In: Kovacevic Z, Guder WG (eds) Molecular nephrology: biochemical aspects of kidney function. Walter de Gruyter, Berlin, pp 321–327Google Scholar
  11. 11.
    Yancey PH, Burg MB (1989) Distribution of major organic osmolytes in rabbit kidneys in diuresis and antidiuresis. Am J Physiol 257: F602 - F607PubMedGoogle Scholar
  12. 12.
    Wirthensohn G, Lefrank S, Schmolke M, Guder WG (1989) Regulation of organic osmolyte concentrations in tubules from rat renal inner medulla. Am J Physiol 256: F128 - F135PubMedGoogle Scholar
  13. 13.
    Beck FX, Dörge A, Thurau K, Guder WG (1990) Cell osmoregulation in the countercurrent system of the renal medulla: The role of organic osmolytes. In: Beyenbach KW (ed) Cell volume regulation, comp physiol. Karger, Basel, pp 132–158Google Scholar
  14. 14.
    Beck FX, Dörge A, Ring T, Sauer M (1989) Element composition of tubule cells in the inner stripe of the renal outer medulla. Miner Electrolyte Metab 15: 144–149PubMedGoogle Scholar
  15. 15.
    Ullrich KJ, Pehling G (1956) Über das Vorkommen von Phosphorverbindungen in verschiedenen Nierenabschnitten and Änderungen ihrer Konzentration in Abhängigkeit vom Diuresezustand. Pflügers Arch 262: 551–561PubMedCrossRefGoogle Scholar
  16. 16.
    Philippson C (1964) Der Gehalt an Glycerylphosphorylcholin and Glycerylphosphoryläthanolamin von Nierenmark and Nierenrinde hochreiner Wistarratten während forcierter Wasserdiurese and extrem langer Durst-Antidiurese. Pflügers Arch 280: 30–37CrossRefGoogle Scholar
  17. 17.
    Yancey PH (1988) Osmotic effectors in kidneys of xeric and mesic rodents: corticomedullary distributions and changes with water availability. J Comp Physiol 158: 369–380Google Scholar
  18. 18.
    Balaban RS, Knepper MA (1983) Nitrogen-14 nuclear magnetic resonance spectroscopy of mammalian tissues. Am J Physiol 245: C439 - C444PubMedGoogle Scholar
  19. 19.
    Bagnasco S, Balaban R, Fales HM, Yang YM, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261: 5872–5877PubMedGoogle Scholar
  20. 20.
    Wolff SD, Stanton TS, James SL, Balaban RS (1989) Acute regulation of the predominant organic solutes of the rabbit renal inner medulla. Am J Physiol 257: F676 - F681PubMedGoogle Scholar
  21. 21.
    Chambers ST, Kunin CM (1987) Osmoprotective activity for Escherichia coli in mammalian renal inner medulla and urine. Correlation of glycine and proline betaines and sorbitol with response to osmotic loads. J Clin Invest 80: 1255–1260Google Scholar
  22. 22.
    Cowley BD, Ferraris JD, Carper D, Burg M (1990) In vivo osmoregulation of aldose reductase mRNA, protein, and sorbitol in renal medulla. Am J Physiol 258: F154 - F161PubMedGoogle Scholar
  23. 23.
    Guder WG, Beck FX, Schmolke M (1991) Organic compounds in renal volume regulation. Proceedings of the XIth Congress of nephrology, July 15–20 1990. Springer, Tokyo Berl in Heidelberg.Google Scholar
  24. 24.
    Grunewald RW, Kinne RKH (1989) Intracellular sorbitol content in isolated rat inner medullary collecting duct. Pflügers Arch 414: 178–184PubMedCrossRefGoogle Scholar
  25. 25.
    Cohen MA, Hruska KA, Daughaday WH (1982) Free myo-inositol in canine kidneys: selective concentration in the renal medulla. Proc Soc Exp Biol Med 169: 380–385PubMedCrossRefGoogle Scholar
  26. 26.
    Wolff SD, Balaban RS (1990) Regulation of the predominant renal medullary organic solutes in vivo. Annu Rev Physiol 52: 727–746PubMedCrossRefGoogle Scholar
  27. 27.
    Schmolke M, Bornemann A, Guder WG (to be published) Distribution and regulation of organic osmolytes along the nephron. In: Koide H, Endou H, Kurokawa K (eds) Cell biology of nephron heterogeneity: fine structure and functions. Karger, BaselGoogle Scholar
  28. 28.
    Grossman EB, Hebert SC (1989) Renal inner medullary choline dehydrogenase activity: characterization and modulation. Am J Physiol 256: F107 - F112PubMedGoogle Scholar
  29. 29.
    Eng J, Berkowitz BA, Balaban RS (to be published) Renal distribution and metabolism of [2H9]choline. A2H NMR and MRI study. NMR BiomedGoogle Scholar
  30. 30.
    Bevan C, Kinne RKH (1990) Choline transport in collecting duct cells isolated from the rat renal inner medulla. Pflügers Arch 417: 324–328PubMedCrossRefGoogle Scholar
  31. 31.
    Nakanishi T, Turner RJ, Burg MB (1990) Osmoregulation of betaine transport in mammalian renal medullary cells. Am J Physiol 258: F1061 - F1067PubMedGoogle Scholar
  32. 32.
    Nakanishi T, Burg MB (1989) Osmoregulatory fluxes of myo-inositol and betaine in renal cells. Am J Physiol 257: C964 - C970PubMedGoogle Scholar
  33. 33.
    Terubayashi H, Sato S, Nishimura C, Kador PF, Kinoshita JH (1989) Localization of aldose and aldehyde reductase in the kidney. Kidney Int 36: 843–851PubMedCrossRefGoogle Scholar
  34. 34.
    Grunewald RW, Kinne RKH (1988) Sugar transport in isolated rat kidney papillary collecting duct cells. Pflügers Arch 413: 32–37PubMedCrossRefGoogle Scholar
  35. 35.
    Sands JM, Terada Y, Bernard LM, Knepper MA (1989) Aldose reductase activities in microdissected rat renal tubule segments. Am J Physiol 256: F563 - F569PubMedGoogle Scholar
  36. 36.
    Bagnasco S, Murphy HR, Bedford JJ, Burg MB (1988) Osmoregulation by slow changes in aldose reductase and rapid changes in sorbitol flux. Am J Physiol 254: C788 - C792PubMedGoogle Scholar
  37. 37.
    Grunewald RW, Kinne RKH (1989) Sorbitol metabolism in inner medullary collecting duct cells of diabetic rats. Pflugers Arch 414: 346–350PubMedCrossRefGoogle Scholar
  38. 38.
    Nakanishi T, Turner RJ, Burg MB (1989) Osmoregulatory changes in myoinositol transport by renal cells. Proc Natl Acad Sci USA 86: 6002–6006PubMedCrossRefGoogle Scholar
  39. 39.
    Schmolke M, Beck FX, Guder WG (1989) Effect of antidiuretic hormone on renal organic osmolytes in Brattleboro rats. Am J Physiol 257: F732 - F737PubMedGoogle Scholar
  40. 40.
    Heilig CW, Brenner BM, Yu ASL, Kone BC, Gullans SR (1990) Modulation of osmolytes in MDCK cells by solutes, inhibitors, and vasopressin. Am J Physiol 259: F653 - F659PubMedGoogle Scholar
  41. 41.
    Uchida S, Garcia-Perez A, Murphy HR, Burg M (1989) Signal for induction of aldose reductase in renal medullary cells by high external NaCI. Am J Physiol 256: C614 - C620PubMedGoogle Scholar
  42. 42.
    Bevan C, Theiss C, Kinne RKH (1990) Role of Car` in sorbitol release from rat inner medullary collecting duct ( IMCD) cells under hypoosmotic stress. Biochem Biophys Res Comm 170: 563–568Google Scholar
  43. 43.
    Moriyama T, Garcia-Perez A, Burg MB (1989) Osmotic regulation of aldose reductase protein synthesis in renal medullary cells. J Biol Chem 264: 16810–16814PubMedGoogle Scholar
  44. 44.
    Epstein W (1986) Osmoregulation by potassium transport in Escherichia coli. FEMS Microbiol Rev 39: 73–78CrossRefGoogle Scholar
  45. 45.
    Sun A, Hebert SC (1989) Rapid hypertonic cell volume regulation in perfused inner medullary collecting duct. Kidney Int 36: 831–842PubMedCrossRefGoogle Scholar
  46. 46.
    Sands JM, Knepper MA, Spring KR (1986) Na-K-CI cotransport in apical membrane of rabbit renal papillary surface epithelium. Am J Physiol 251: F475 - F484PubMedGoogle Scholar

Copyright information

© Springer Japan 1991

Authors and Affiliations

  • F. X. Beck
  • K. Thurau
    • 1
  • M. Schmolke
  • W. G. Guder
    • 2
  1. 1.Physiologisches Institut der UniversitätStädtisches Krankenhaus München-BogenhausenMunichFederal Republic of Germany
  2. 2.Institut für Klinische ChemieStädtisches Krankenhaus München-BogenhausenMunichFederal Republic of Germany

Personalised recommendations