Skip to main content

Biology of Acid-Base Transport in Distal Urinary Epithelia

  • Chapter
Nephrology
  • 7 Accesses

Summary

The biology of acid-base transport in distal urinary epithelia is reviewed under four headings: 1) The major function of urinary acidification is based in a intercalated cells or carbonic anhydrase cells. The a cells secrete H+ into the urinary compartment by means of a vacuolar H+-ATPase located at the apical cell membrane. Structure-function studies reveal that the number of pumps in an apical membrane position varies with acid-base conditions via a mechanism of exocytosis and endocytosis. The basolateral membrane of the a cell contains Cl-HCO3 exchangers, which closely resemble the red cell band 3 protein, and parallel conductive Cl channels. The high transport rates achieved by α cells appear to be a function of the efficient packing of H+-ATPase molecules in the apical membrane. 2) The function of bicarbonate secretion is confined to a small population of β intercalated cells and is less well understood. β cell function is observed in turtle urinary bladder and in the cortical segments of the mammalian collecting duct. The apical membrane of the β cell contains a Cl-HCO3 exchanger that differs from the basolateral one of the α cell. Transport is driven by a basolateral H+-ATPase. 3) The sodium transporting cells of the distal nephron usually contain basolateral Na/H antiporters involved in the regulation of intracellular pH. In some segments an apical Na/H antiporter may contribute to vectorial H+ secretion. 4) Overall acid-base transport in the distal nephron is a complex function of the geometry of the transporting systems and the availability of proton acceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinmetz PR, Husted A, Mueller A, Beauwens R (1981) Coupling between W transport and anaerobic glycolysis in turtle urinary bladder: effects of inhibitors of H’ ATPase. J Membr Biol 59: 27–34

    Article  PubMed  CAS  Google Scholar 

  2. Beauwens R, Al-Awqati Q (1976) Active W transport in the turtle urinary bladder:coupling of transport to glucose oxidation. J Gen Physiol 68: 421–439

    Article  PubMed  CAS  Google Scholar 

  3. Rosen S (1972) Localization of carbonic anhydrase activity in turtle and toad urinary bladder mucosa. J Histochem Cytochem 20: 696–702

    Article  PubMed  CAS  Google Scholar 

  4. Husted RF, Mueller AL, Kessel RG, Steinmetz PR (1981) Surface characteristics of carbonic-anhydrase rich cells in turtle urinary bladder. Kidney Int 19: 491–502

    Article  PubMed  CAS  Google Scholar 

  5. Stetson DL, Steinmetz PR (1985) a-and 1-types of carbonic anhydrase-rich cells in turtle bladder. Am J Physiol 249 (Renal Fluid Electrolyte Physiol 18 ): F553 - F565

    Google Scholar 

  6. Stetson DL, Steinmetz PR (1986) Correlation between apical intramembrane particles and W secretion rates during CO2 stimulation in turtle bladder. Pflugers Arch 407 (Suppl 2): S80 - S84

    Article  PubMed  Google Scholar 

  7. Gluck S, Cannon C, Al Awqati Q (1982) Exocytosis regulates urinary acidification in turtle bladder by rapid insertion of W pumps into the luminal membrane. Proc Natl Acad Sci USA 79: 4327–4331

    Article  PubMed  CAS  Google Scholar 

  8. Steinmetz PR (1986) Cellular organization of urinary acidification. Am J Physiol 251 (Renal Fluid Electrolyte Physiol 20): F173 - F187

    PubMed  CAS  Google Scholar 

  9. Drenckhahn D, Oelmann M, Schaaf P, Wagner M, Wagner S (1987) Band 3 is the basolateral anion exchanger of dark epithelial cells of turtle urinary bladder. Am J Physiol 252 (Cell Physiol 21): C570–0574

    PubMed  CAS  Google Scholar 

  10. Dixon TE, Al-Awqati A (1979) Urinary acidification in turtle bladder is due to a reversible proton-translocating ATPase. Proc Natl Acad Sci USA 76: 3135–3138

    Article  PubMed  CAS  Google Scholar 

  11. Gluck S, Caldwell J (1988) Proton-translocating ATPase from bovine kidney medulla:partial purification and reconstitution. Am J Physiol 254: F71 - F79

    PubMed  CAS  Google Scholar 

  12. Brown D, Gluck S, Hartwig J (1987) Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H’-ATPase. J Cell Biol 105: 1637–1648

    Article  PubMed  CAS  Google Scholar 

  13. Brown D, Hirsch S, Gluck S (1988) Localization of a proton pumping ATPase in rat kidney. J Clin Invest 82: 2114–2126

    Article  PubMed  CAS  Google Scholar 

  14. Koeppen BM (1985) Conductive properties of the rabbit outer medullary collecting duct:inner stripe. Am J Physiol 248 (Renal Fluid Electrolyte Physiol 17): F500 - F506

    PubMed  CAS  Google Scholar 

  15. Andersen OS, Silveira JEN, Steinmetz PR (1985) Intrinsic characteristics of the proton pump in the luminal membrane of a tight urinary epithelium. The relation between transport rate and A µH. J Gen Physiol 86: 215–234

    Google Scholar 

  16. Stone DK, Crider BP, Xie XS (1990) Structure of vacuolar proton pumps. Semin Nephrol 10: 159–165

    PubMed  CAS  Google Scholar 

  17. Schuster VL (1990) Bicarbonate reabsorption and secretion in the cortical and outer medullary collecting tubule. Semin Nephrol 10: 139–147

    PubMed  CAS  Google Scholar 

  18. Verlander JW, Madsen KM, Low PS, Allen DP, Tisher CC (1988) Immunocytochemical localization of band 3 protein in the rat collecting duct. Am J Physiol 255 (Renal Fluid Electrolyte Physiol 24): F115 - F125

    PubMed  CAS  Google Scholar 

  19. Leslie BR, Schwartz JH, Steinmetz PR (1973) Coupling between Cl-absorption and HCO, secretion in turtle urinary bladder. Am J Physiol 255: 610–617

    Google Scholar 

  20. McKinney TD, Burg MB (1978) Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J Clin Invest 61: 1421–1427

    Article  PubMed  CAS  Google Scholar 

  21. Stetson DL, Beauwens R, Palmisano J, Mitchell PP, Steinmetz PR (1985) A double-membrane model for urinary bicarbonate secretion. Am J Physiol 249 (Renal Fluid Electrolyte Physiol 18): F546 - F552

    PubMed  CAS  Google Scholar 

  22. Kohn OF, Mitchell PP, Steinmetz PR (1990) Characteristics of apical Cl-HCO, exchanger of bicarbonate-secreting cells in turtle bladder. Am J Physiol 258: F9 - F14

    PubMed  CAS  Google Scholar 

  23. Stetson DL (1989) Turtle urinary bladder:regulation of ion transport by dynamic changes in plasma membrane area. Am J Physiol 257: R973 - R981

    PubMed  CAS  Google Scholar 

  24. Schwartz GJ, Barasch J, Al-Awqati Q (1985) Plasticity of functional epithelial polarity. Nature 318: 368–371

    Article  PubMed  CAS  Google Scholar 

  25. Schwartz JH, Bethencourt D, Rosen S (1982) Specialized function of carbonic anhydraserich and granular cells of turtle bladder. Am J Physiol 242 (Renal Fluid Electrolyte Physiol 11): F627 - F633

    PubMed  CAS  Google Scholar 

  26. Ridderstrale Y, Kashgarian M, Koeppen B, Giebisch G, Stetson D, Ardito T, Stanton B (1988) Morphological heterogeneity of the rabbit collecting duct. Kidney Int 34: 655–670

    Article  PubMed  CAS  Google Scholar 

  27. Weiner ID, Hamm LL (1990) Regulation of intracellular pH in the rabbit cortical collecting tubule. J Clin Invest 85: 274–281

    Article  PubMed  CAS  Google Scholar 

  28. Paillard M, Bichara M (1989) Peptide hormone effects on urinary acidification and acid-base balance: PTH, ADH, and glucagon. Am J Physiol 256: F973 - F985

    PubMed  CAS  Google Scholar 

  29. Good DW, Knepper MA (1990) Mechanisms of ammonium excretion:role of the renal medulla. Semin Nephrol 10: 166–173

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Steinmetz, P.R. (1991). Biology of Acid-Base Transport in Distal Urinary Epithelia. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics