Nephrology pp 444-447 | Cite as

Role of Ca2+ ATPase and Plasma Membrane Ca2+ Pump in Ca2+ Transport by the Mammalian Kidney

  • John T. Penniston

Summary

Current evidence suggests that Ca2+ transport in the distal nephron involves transit of Cat2+ through the epithelial cells and movement out of these cells on the basolateral side via the ATP-powered plasma membrane Caz2+ pump.

Keywords

Hydrolysis Erythro 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Penniston JT (1983) Plasma membrane Ca2+-ATPases as active Ca2+ pumps. In: Cheung WY (ed) Calcium and cell function, vol 4. Academic, New York, pp 99–149Google Scholar
  2. 2.
    Ghijsen W, Gmaj P, Murer H (1984) Ca2+-stimulated Mg2+-independent ATP hydrolysis and the high affinity Ca2+-pumping ATPase. Two different activities in rat kidney basolateral membranes. Biochim Biophys Acta 778: 481–488Google Scholar
  3. 3.
    van Heeswijk MPE, Geertsen JAM, van Os CH (1984) Kinetic properties of the ATP-dependent Ca2+ pump and the Na2+/Ca2+ exchange system in basolateral membranes from rat kidney cortex. J Membr Biol 79: 19–31Google Scholar
  4. 4.
    Borke JL, Minami J, Verma A, Penniston JT, Kumar R (1987) Monoclonal antibodies to human erythrocyte membrane Ca2+-Mg2+ adenosinetriphosphatase pump recognize an epitope in the basolateral membrane of human kidney distal tubule cells. J Clin Invest 80: 1225–1231PubMedCrossRefGoogle Scholar
  5. 5.
    Borke JL, Minami J, Verma AK, Penniston JT, Kumar R (1988) Co-localization of erythrocyte Ca2+-Mg2+ ATPase and vitamin D-dependent 28-kilodalton calcium binding protein in the cells of human kidney distal tubules. Kidney Int 34: 262–267PubMedCrossRefGoogle Scholar
  6. 6.
    van Os CH (1987) Transcellular calcium transport in intestinal and renal epithelial cells. Biochim Biophys Acta 906: 195–222PubMedCrossRefGoogle Scholar
  7. 7.
    Terepka AR, Coleman JR, Armbrecht HJ, Gunter TE (1976) Transcellular transport of calcium. Symposia of the Society for Experimental Biology, No. XXX, Calcium in biological systems. Cambridge University Press, Cambridge, pp 117–140Google Scholar
  8. 8.
    Gmaj P, Murer H, Carafoli E (1982) Localization and properties of a high-affinity Ca2+ + Mgt2+ ATPase in isolated kidney cortex plasma membranes. FEBS Lett 144: 226–230PubMedCrossRefGoogle Scholar
  9. 9.
    Verma AK, Filoteo AG, Stanford DR, Wieben ED, Penniston JT, Strehler EE, Fischer R, Heim R, Vogel G, Matthews S, Strehler-Page MA, James P, Vorherr T, Krebs J, Carafoli E (1988) Complete primary structure of a human plasma membrane Ca2+ pump. J Biol Chem 263: 14152–14159PubMedGoogle Scholar
  10. 10.
    Strehler EE, James P, Fischer R, Heim R, Vorherr T, Filoteo AG, Penniston JT, Carafoli E (1990) Peptide sequence analysis and molecular cloning reveal two calcium pump isoforms in the human erythrocyte membrane. J Biol Chem 265: 2835–2842PubMedGoogle Scholar
  11. 11.
    Greeb J, Shull GE (1989) Molecular cloning of a third isoform of the calmodulin-sensitive plasma membrane Ca2+-transporting ATPase that is expressed predominantly in brain and skeletal muscle. J Biol Chem 264: 18569–18576PubMedGoogle Scholar
  12. 12.
    Shull GE, Greeb J (1988) Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+, K+- and other cation transport ATPases. J Biol Chem 263: 8646–8657PubMedGoogle Scholar

Copyright information

© Springer Japan 1991

Authors and Affiliations

  • John T. Penniston
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyMayo ClinicRochesterUSA

Personalised recommendations