Skip to main content
Book cover

Nephrology pp 303–311Cite as

Ion Transport Abnormalities in the Development of Hypertension

  • Chapter
  • 10 Accesses

Abstract

During the last decade mechanisms of ion transport across the cell membrane have been studied by many investigators interested in arterial hypertension [1–4], because ion transport is fundamental in the regulation of body fluids, renal function, hormone secretion and activity, nerve activity, etc. So far, many abnormalities of various ion transport systems have been described in hypertensive rats and in men with “hereditary” forms of hypertension. Such abnormalities regarding Na-K co-transport [5–7], Na/Li countertransport [6,8–10], Na/H countertransport [11,12], Na-K pump [13], passive permeability or leak [14], Ca pump [15], Ca channels [16] etc. have been reported in the literature. Therefore, theoretically, an abnormality of ion transport might be involved in the pathogenesis of “hereditary” or “primary” forms of hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Postnov YV (1990) An approach to the explanation of cell membrane alteration in primary hypertension. Hypertension 15: 332–337

    Article  PubMed  CAS  Google Scholar 

  2. Ives HE (1989) Ion transport defects and hypertension: Where is the link? Hypertension 14: 590–597

    Article  PubMed  CAS  Google Scholar 

  3. Aviv A, Lasker N (1990) Proposed defects in membrane transport and intracellular ions as pathogenic factors in essential hypertension. In: Laragh, Brenner (eds) Hypertension: Pathophysiology, Diagnosis, and Management, vol 1. Raven, pp 923–937

    Google Scholar 

  4. Bianchi G (1986) Ion transport across blood cell membrane in essential hypertension. Curr Opin Cardiol 1: 634–639

    Article  Google Scholar 

  5. Garay RP, Dagher G, Pernolett MG, Dewynck MA, Meyer P (1980) Inherited defect in Na*,K*-cotransport system in erythrocyte from essential hypertensive patients. Nature 284: 281–283

    Article  PubMed  CAS  Google Scholar 

  6. Cusi D, Barlassina C, Ferrandi M, Lupi GP, Ferrari P, Bianchi (1981) Familial aggregation of cation transport abnormalities and essential hypertension. Clin Exp Hypertens [Al 3: 871–884

    Article  CAS  Google Scholar 

  7. Canessa M, Spalvins A, Adragna N, Falkner B (1984) Red cell sodium countertransport and cotransport in normotensive and hypertensive blacks. Hypertension 6: 344–351

    Article  PubMed  CAS  Google Scholar 

  8. Canessa M, Adragna N, Solomon HS, Connolly TM, Torteson D (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302: 772–776

    Article  PubMed  CAS  Google Scholar 

  9. Weder AB, Schork NJ (1989) Mixture analysis of erythrocyte lithium-sodium countertransport and blood pressure. Hypertension 2: 145–150

    Article  Google Scholar 

  10. Woods JW, Falk RJ, Pittman AW, Klemmer PJ, Watson BS, Namboodiri K (1982) Increased red cell sodium-lithium counter-transport in normotensive sons of hypertensive patients. N Engl J Med 306: 593–595

    Article  PubMed  CAS  Google Scholar 

  11. Livne A, Balfe JW, Veitch R, Marquez-Julio A, Grinstein S, Rothstein A (1987) Increased platelet Na*-H* exchange rates in essential hypertension: Application of a novel test. Lancet I: 533–536

    Google Scholar 

  12. Semplicini A, Canessa M, Mozzato MG, Ceolotto G, Marzola M, Buzzaccarini F, Casolino P, Pessina AC (1989) Red blood cell Na*/H* and Li./Na* exchange in patients with essential hypertension. Am J Hypertens 2: 903–908

    PubMed  CAS  Google Scholar 

  13. Diez J, Hannaert P, Garay R (1987) Kinetic study of Na*-K* pump in erythrocytes from essential hypertensive patients. Am J Physiol 252: H1 - H6

    PubMed  CAS  Google Scholar 

  14. Garay RP, Nazaret C (1985) Na* leak in erythrocytes from essential hypertensive patients. Clin Sci 69: 613–624

    PubMed  CAS  Google Scholar 

  15. de la Sierra A, Hannaert P, 011ivier JP, Senn N, Garay R (1990) Kinetic study of the Cat* pump in erythrocytes from essential hypertensive patients. J Hypertens 3: 285–293

    Google Scholar 

  16. Hermsmeyer K, Rusch N (1989): Calcium channel alterations in genetic hypertension. Hypertension 4: 453–456

    Article  Google Scholar 

  17. Canessa M, Brugnara C, Tosteson DC, Cusi D (1986) Modes of operation and variable stoichiometry of furosemide-sensitive Na and K fluxes in human red cells. J Gen Physiol 87: 113–147

    Article  PubMed  CAS  Google Scholar 

  18. Canessa M, Brugnara C, Escobales N (1987) The Li.’-Na* exchange and Na*-K*-Cl-cotransport systems in essential hypertension. Hypertension 10: 4–10

    Article  Google Scholar 

  19. Adragna NC, Chang JL, Morey MC, Williams R (1985) Effect of exercise on cation transport in human red cells. Hypertension 7: 132–139

    Article  PubMed  CAS  Google Scholar 

  20. Rosati C, Meyer P, Garay R (1988) Sodium transport kinetics in erythrocytes from spontaneously hypertensive rats. Hypertension 1: 41–48

    Article  Google Scholar 

  21. Ferrari P, Ferrandi M, Torielli L, Canessa M, Bianchi G (1987) Relationship between erythrocyte volume and sodium transport in the Milan hypertensive rat and age-dependent changes. J Hypertens 5: 199–206

    Article  PubMed  CAS  Google Scholar 

  22. Orlov SN, Postnov IY, Pokudin NI, Kukharenko VY, Postnov YV (1989) Na*-H* exchange and other ion-transport systems in erythrocytes of essential hypertensives and spontaneously hypertensive rats: a comparative analysis. J Hypertens 7: 781–788

    Article  PubMed  CAS  Google Scholar 

  23. Ferrari P, Torielli M, Ferrandi M, Bianchi G (1988) The role of membrane skeleton in the alteration of Na-K cotransport (CO) in Milan hypertensive rats (MHS) (abstract) 12th scientific meeting of the International Society of Hypertension, May 22–26 1988. Kyoto, Japan

    Google Scholar 

  24. Ferrari P, Torielli L, Cirillo M, Salardi S, Bianchi G (to be published) Sodium transport kinetics in erythrocytes and inside-out vesicles from Milan rats.

    Google Scholar 

  25. Ferrandi M, Salardi S, Parenti P, Ferrari P, Bianchi G, Braw R, Karlish SJD (1990) Na*/K*/Cl--cotransporter mediated Rb* fluxes in membrane vesicles from kidneys of normotensive and hypertensive rats. BBA Biomembranes 1021: 13–20

    Article  PubMed  CAS  Google Scholar 

  26. Socorro L, Vallega G, Nunn A, Moore TJ, Canessa M (1990) Vascular smooth muscle cells from the Milan hypertensive rat exhibit decreased functional angiotensin II receptors. Hypertension 15 (part 1)

    Google Scholar 

  27. Feig PU, Mitchel PP, Boylan JW (1985) Erythrocyte membrane transport in hypertensive humans and rats: Effect of sodium depletion and excess. Hypertension 7: 423–429

    Google Scholar 

  28. Duhm J, Göbel BO, Beck FX (1983) Sodium potassium ion transport accelerations in erythrocytes of DOC, DOC-salt, two kidney, one clip, and spontaneously hypertensive rats: Role of hypokalemia and cell volume. Hypertension 5: 642–652

    Google Scholar 

  29. Kurtz TW, Montano M, Chan L, Kabra P (1989) Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: Implications for research with spontaneously hypertensive rat. Hypertension 13: 188–192

    Google Scholar 

  30. Tokushige A, Kino M, Tamura H, Hopp L, Searle BM, Aviv A (1986) Bumetide-sensitive sodium-22 transport in vascular smooth muscle cell of the spontaneously hypertensive rat. Hypertension 8: 379–385

    Article  PubMed  CAS  Google Scholar 

  31. O’Donnel ME, Owen NE (1988) Reduced Na-K-Cl cotransport in vascular smooth muscle cells from spontaneously hypertensive rats. Am J Physiol 255 (Cell Physiol 24):C169-C 180

    Google Scholar 

  32. Weder AB (1986) Red-cell lithium-sodium countertransport and renal lithium clearance in hypertension. N Engl J Med 314: 198–201

    Article  PubMed  CAS  Google Scholar 

  33. Cusi D, Barlassina C, Tripodi G, Alberghini E, Pozzoli E, Stella P, Bianchi G (to be published) Mixture analysis of erythrocyte Na-K cotransport and Li-Na countertransport in essential hypertension. Am J Hypertens

    Google Scholar 

  34. Bianchi G, Fox U, Di Francesco G.F, Bardi U, Radice M (1973) The hypertensive role of the kidney in spontaneously hypertensive rats. Clin Sci Mol Med, 45(Suppl I):135S139S

    Google Scholar 

  35. Bianchi G, Fox U, Di Francesco G.F, Giovanetti AM, Pagetti D (1974) Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med 47: 435–448

    PubMed  CAS  Google Scholar 

  36. Fox U, Bianchi G (1976) The primary role of the kidney in causing the blood pressure difference between the Milan Hypertensive strain (MHS) and the normotensive rats (MNS). Proceedings of the symposium on spontaneous genetic hypertension in rats, Dunedin, New Zealand, 4–6 March 1976. Clin Exp Pharmacol Physiol (Suppl 3 ): 71–74

    Google Scholar 

  37. Salvati P, Pinciroli G. P, Bianchi G (1984) Renal function of isolated perfused kidneys from hypertensive (MHS) and normotensive (MNS) rats of the Milan strain at different ages. J Hypertens 2 (Suppl 3): 351–353

    Google Scholar 

  38. Salvati P, Ferrario R.G, Parenti P, Bianchi G (1987) Renal function of isolated perfused kidneys from hypertensive (MHS) and normotensive (MNS) rats of the Milan strain: role of calcium. J Hypertens 5: 31–38

    Article  PubMed  CAS  Google Scholar 

  39. Parenti P, Hanozet G, Bianchi G (1986) Sodium and glucose transport across renal brush-border membranes of Milan hypertensive rats. Hypertension 8: 932–939

    Article  PubMed  CAS  Google Scholar 

  40. Hanozet GM, Parenti P, Salvati P (1985) Presence of potential-sensitive Na’ transport across renal brush-border membrane vesicles from rats of the Milan hypertensive strain. BBA 819: 179–186

    Article  PubMed  CAS  Google Scholar 

  41. Salvati P, Ferrario RG, Bianchi G (1990) Diuretic effect of bumetanide in isolated perfused kidneys of Milan hypertensive rats. Kidney Int 37: 1084–1089

    Article  PubMed  CAS  Google Scholar 

  42. Lapointe JY, Bell PD, Cardinal J (1990) Direct evidence for apical Na’:2C1-:K’ cotransport in macula densa cells. Am J Physiol 258 (Renal Fluid Electrolyte Physiol 27): F1466 - F1469

    PubMed  CAS  Google Scholar 

  43. Persson A.E, Bianchi G, Boberg U (1984) Evidence of defective tubuloglomerular feedback control in rats of the Milan hypertensive strain ( MHS ). Acta Physiol Scand 122: 215–217

    Google Scholar 

  44. Persson AE, Bianchi G, Boberg U (1985) Tubuloglomerular feedback in hypertensive rats of the Milan strain. Acta Physiol Scand 123: 139–146

    Article  PubMed  CAS  Google Scholar 

  45. Melzi ML, Bertorello A, Fukuda Y, Muldin I, Sereni F, Aperia A (1989) Na, K-ATPase activity in renal tubule cells from Milan hypertensive rats. Am J Hypertens 2: 563–566

    Google Scholar 

  46. Bianchi G, Ferrari P, Trizio D, Ferrandi M, Torielli L, Barber B.R, and Polli E (1985) Red blood cell abnormalities and spontaneous hypertension in the rat: A genetically determined link. Hypertension 7: 319–325

    Google Scholar 

  47. Ferrari P, Torielli L, Ferrandi M, Cirillo M, Bianchi G (1986) Volumes and Na transports in intact red blood cells, resealed ghosts and inside-out vesicles of Milan hypertensive rats J Hypertens, 4 (Suppl 6): S379 - S381

    Google Scholar 

  48. Ferrari P, Torielli L, Ferrandi M, Bianchi G (1986) Volumes and Na transports in intact red blood cells, resealed ghosts and inside out vesicles of Milan hypertensive rats. In: Bianchi G, Carafoli E, Scarpa A (eds) Ann NY Acad Sci 488: 561–563

    Google Scholar 

  49. Salardi S, Saccardo, Borsani, Modica, Ferrandi M, Tripodi G, Soria, Ferrari P, Barralle, Sidoli I, Bianchi G (1989) Erythrocyte Adducin Differential Properties in Normotensive and Hypertensive rats of the Milan Strain: Characterization of Spleen Adducin m-RNA. Am J Hypertens 2: 229–237

    Google Scholar 

  50. Tripodi G, Borsani G, Piscone A, Tisminetzky S, Salardi S, Sidoli A, Baralle FE, Bianchi G (1990) Difference between MNS and MHS rats in the cDNA coding for adducin (abstract). 13th scientific meeting of the International Society of Hypertension, 24–29 June 1990. Montreal, Canada

    Google Scholar 

  51. Niutta E, Cusi D, Colombo R, Tripodi G, Pellizzoni M, Pati P, Cesana B, Alberghini E, Barlassina C, and Bianchi G (1988) Antihypertensive Effect of Captopril, Canreonate Potassium, and Atenolol; Relations with Red Blood Cell Sodium Transport and Renin. Am J Hypertens 1: 364–371

    Google Scholar 

  52. Camussi A, Bianchi G (1988) Genetics of Essential Hypertension From the Unimodal-Bimodal Controversy to Molecular Technology. Hypertension 12: 620–628

    Article  PubMed  CAS  Google Scholar 

  53. Redgrave J, Canessa M, Gleason R, Hollenberg NK, Williams GH (1989) Red blood cell lithium-sodium countertransport in non-modulating essential hypertension. Hypertension 13: 721–726

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Bianchi, G., Cusi, D., Ferrari, P., Tripodi, M.G., Barber, B. (1991). Ion Transport Abnormalities in the Development of Hypertension. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics