Nephrology pp 242-251 | Cite as

Role of Acid-Base Disturbance on Potassium Transport Along the Nephron

  • Kaoru Tabei
  • Shigeaki Muto
  • Hiroaki Furuya
  • Yasunori Sakairi
  • Yasuhiro Ando
  • Yasushi Asano

Summary

We evaluated the role of acidosis on the regulation of transepithelial potassium transport in rabbit early proximal convoluted tubules (PCT) and cortical collecting ducts (CCD) by using in vitro microperfusion and conventional microelectrode methods. In PCT, when the bath medium pH declined from 7.4 to 6.8, transepithelial voltage (Vt) and net potassium flux (JK) increased; however, in CCD, Vt and JK decreased significantly without changing net Na flux. In CCD, basolateral acidosis decreased basolateral membrane voltage and increased transepithelial resistance, with an increment of calculated fractional resistance of apical membrane in principal cells. Inhibition of JK by basolateral acidosis remained significant in the presence of 2mM luminal BaC12. Elimination of ambient bicarbonate (Hepes buffer solution) did not affect the inhibitory effect of basolateral acidosis on JK. Basolateral 1 mM amiloride diminished the inhibitory effect of basolateral acidosis on JK. The 86Rb and 22Na efflux coefficients were not significantly affected by basolateral acidosis.

In conclusion, the present study demonstrates that basolateral acidosis affects JK in both PCT and CCD, but it does so in opposite directions. In CCD, basolateral pH is indeed an important modulator of epithelial K transport. Mechanistically, basolateral acidosis appears to inhibit apical K conductance independently of Na conductance or ambient bicarbonate in rabbit CCD.

Keywords

Boron Barium Bicarbonate Luminal Alanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    De Fronzo RA, Bia M (1985) Extrarenal potassium homeostasis. In: Seldin DW, Giebisch G (eds) The kidney; physiology and pathophysiology. Raven, New York, pp 1179–1206Google Scholar
  2. 2.
    Simmons DH, Avedon M (1959) Acid base alterations and plasma potassium concentration. Am J Physiol 197: 319–326PubMedGoogle Scholar
  3. 3.
    Burnell JM, Villamil MF, Uyeno BT, Scribner BH (1956) Effect in humans of extracellular pH change in relationship betwen serum potassium concentration and intracellular potassium. J Clin Invest 35: 935–939PubMedCrossRefGoogle Scholar
  4. 4.
    Adrogue HJ, Madias NE (1981) Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 71: 456–467PubMedCrossRefGoogle Scholar
  5. 5.
    Schwartz WB, Brackett N, Cohen JJ (1965) The response of extracellular hydrogen ion concentration to graded degrees of chronic hypercapnia. The physiologic limits of the defense of pH. J Clin Invest 44: 291–301Google Scholar
  6. 6.
    Tabei K, Furuya H, Shimanaka K, Shindo Y, Hosoi H, Asano (1986) Changes of erythrocyte K concentration and K removal by hemodialysis. J Japn Soc Dial Ther 19: 793–802Google Scholar
  7. 7.
    Sakairi Y, Tabei K, Furuya H, Ando H, Asano Y (1990) Regulation of extrarenal potassium (K) homeostasis in chronically hemodialyzed patients (pts) (abstract). Proceedings of the XIth international congress of nephrology, July 15–20, 1990. Tokyo, JapanGoogle Scholar
  8. 8.
    Berliner RW, Kennedy TJ, Orloff J (1951) Relationship between acidification of the urine and potassium metabolism. Am J Med 11: 274PubMedCrossRefGoogle Scholar
  9. 9.
    Berliner RW (1952) Renal secretion of potassium and hydrogen ions. Fed Proc 11: 695PubMedGoogle Scholar
  10. 10.
    Schwartz WB, Cohen JJ (1978) The nature of the renal response to disorders of acid-base equilibrium. Am J Med 64: 417PubMedCrossRefGoogle Scholar
  11. 11.
    Seldin DW, Rector FC Jr (1972) The generation and maintenance of metabolic alkalosis. Kidney Int 1: 306PubMedCrossRefGoogle Scholar
  12. 12.
    Khuri RN, Windderholt M, Strieder N, Giebisch G (1975) Effects of flow rate and potassium intake on distal tubular potassium transfer. Am J Physiol 228: 1249PubMedGoogle Scholar
  13. 13.
    Muto S, Giebisch G, Sanson S (1988) An acute increase of peritubular K stimulates K transport through cell pathways of CCT. Am J Physiol 255: F108 - F114PubMedGoogle Scholar
  14. 14.
    Toussaint C, Vereerstraeten P (1962) Effect of blood pH changes on potassium excretion in the dog. Am J Physiol 202: 768PubMedGoogle Scholar
  15. 15.
    Biagi B, Kubota T, Sohtell M, Giebsch G (1981) Intracellular potentials in rabbit proximal tubules perfused in vitro. Am J Physiol 240: F200 - F210PubMedGoogle Scholar
  16. 16.
    Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubules of the salamander. J Gen Physiol 81: 53–94PubMedCrossRefGoogle Scholar
  17. 17.
    Kubota T, Biagi BA, Giebisch G (1983) Effects of acid base disturbances on basolateral membrane potential and intracellular potassium activity in the proximal tubule of Necturus. J Membr Biol 73: 61–68PubMedCrossRefGoogle Scholar
  18. 18.
    Steels PS, Boulpaep EL (1987) pH-dependent electrical properties and buffer permeability of the Necturus renal proximal tubule cell. J Membr Biol 100: 165–182Google Scholar
  19. 19.
    Burckhardt BC, Fromter E (1987) Evidence for OH-/H’ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO3 -free solution. Pflügers Arch 409: 132–137PubMedCrossRefGoogle Scholar
  20. 20.
    Ohno-Shosaku T, Kubota T, Yamaguchi J, Fujimoto M (1990) Regulation of inwardly rectifying K. channels by intracellular pH in opossum kidney cells. Pflügers Arch 416: 138–143PubMedCrossRefGoogle Scholar
  21. 21.
    Malnic G, deMello-Aires M, Giebisch G (1971) Potassium transport across renal tubules during acid-base disturbance. Am J Physiol 211: 1192Google Scholar
  22. 22.
    Stanton BA, Giebisch G (1982) Effect of pH on potassium transport by renal distal tubules. Am J Physiol 242: F544PubMedGoogle Scholar
  23. 23.
    Boudry JF, Stoner LC, Burg MB (1976) The effect of luminal pH on potassium transport in renal cortical collecting tubules. Am J Physiol 230: 239PubMedGoogle Scholar
  24. 24.
    O’Neil RG, Sansom SC (1984) Characterization of apical cell membrane Na* and K. conductances of cortical collecting duct using microelectrode techniques. Am J Physiol 247: F14 - F24PubMedGoogle Scholar
  25. 25.
    Burg MB, Grantham J, Abramow M, Orloff J (1966) Preparation and study of fragments of rabbit nephron. Am J Physiol 210: 1293–1298PubMedGoogle Scholar
  26. 26.
    Ando Y, Tabei K, Furuya H, Asano Y (1989) Glucagon stimulates chloride transport independently of cyclic AMP in the rat medullary TAL. Kidney Int 31: 760–767CrossRefGoogle Scholar
  27. 27.
    Muto S, Sansom S, Giebisch G (1988) Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits. J Clin Invest 81: 376–380PubMedCrossRefGoogle Scholar
  28. 28.
    Tabei K, Furuya H, Muto S, Asano, Y (1988) Potassium (K) is secreted in rabbit proximal convoluted tubules ( PCT) in vitro. Kidney Int 35: 489Google Scholar
  29. 29.
    Wasserstein AG, Agus ZS (1983) Potassium secretion in the rabbit proximal straight tubule. Am J Physiol 245: F167 - F174PubMedGoogle Scholar
  30. 30.
    Work J, Troutman L, Schafer JA (1982) Transport of potassium in the rabbit pars recta. Am J Physiol 242: F226 - F237PubMedGoogle Scholar
  31. 31.
    Tabei K, Imai M (1986) Permselectivity for cations over anions in the upper portion of the descending limb of the long-loop nephron ( LDLu) of hamsters. Pflügers Arch 406: 279–284Google Scholar
  32. 32.
    Tabei K, Imai M (1987) K transport in upper portion of descending limb of long-loop nephron from hamsters. Am J Physiol 252: F387 - F392PubMedGoogle Scholar
  33. 33.
    Taniguchi J, Tabei K, Imai M (1987) Profile of water and solute transport along long-loop descending limb: analysis by a mathematical model. Am J Physiol 252: F393 - F402PubMedGoogle Scholar
  34. 34.
    Giebisch G, Malnic G, Berliner RW (1986) Renal transport and control of potassium excretion. In: Brenner BM, Rector FC Jr (eds) The kidney. Saunders, Philadelphia, pp 177–205Google Scholar
  35. 35.
    Giebel J, Zweifach A, White S, Wang W, Giebisch G (1990) K’ channels of the mammalian collecting duct. Renal Physiol Biochem 13: 5969Google Scholar
  36. 36.
    Koeppen B, Biagi BA, Giebisch G (1983) Electrophysiology of mammalian renal tubule: influences from intracellular microelectrode studies, Annu Rev Physiol 45: 497–517PubMedCrossRefGoogle Scholar
  37. 37.
    Wang W, Giebisch G (1989) The regulation of the small conductance K. channel in the apical membrane of rat cortical collecting tubule (abstract). Proc Am Soc Nephrol 21: 386AGoogle Scholar
  38. 38.
    Frint G, Palmer IG (1987) Ca-activated K channels in apical membrane of mammalian CCT, and their role in K secretion. Am J Physiol 252: F458 - F467Google Scholar

Copyright information

© Springer Japan 1991

Authors and Affiliations

  • Kaoru Tabei
    • 1
  • Shigeaki Muto
    • 1
  • Hiroaki Furuya
    • 1
  • Yasunori Sakairi
    • 1
  • Yasuhiro Ando
    • 1
  • Yasushi Asano
    • 1
  1. 1.Div. of Nephrology, Dept. of MedicineJichi Medical SchoolTochigiJapan

Personalised recommendations