Nephrology pp 1376-1379 | Cite as

Strategies for Evaluating the Molecular Structure of Membrane Transport Systems

  • Ernest M. Wright

Summary

The strategies that have been successfully employed to identify and characterize the brush border Na+/glucose cotransporter are summarized. These include the use of photoaffinity and covalent reagents, expression cloning, polyclonal antibodies to defined domains of the predicted sequence, and cDNA probes. The successful application of these strategies to renal membrane proteins will significantly advance the study of transporters for organic molecules.

Keywords

Tyrosine Electrophoresis Proline Lysine Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hosang M, Vasella A, Semenza G (1981) Specific photoaffinity inactivation of the D-glucose transporter in small intestinal brush border membrane using new phlorizin analogues. Biochemistry 20: 5844–5854PubMedCrossRefGoogle Scholar
  2. 2.
    Schmidt UM, Eddy B, Frazer CM, Venter CJ, Semenza G (1983) Isolation of (a subunit of) the Na+/D-glucose cotransporter(s) of rabbit intestinal brush border membranes using monoclonal antibodies. FEBS Lett 161: 279–283PubMedCrossRefGoogle Scholar
  3. 3.
    Peerce BE, Wright EM (1984) Sodium-induced conformational changes in the glucose transporter of intestinal brush borders. J Biol Chem 259: 14105–14112PubMedGoogle Scholar
  4. 4.
    Peerce BE, Wright EM (1985) Evidence for tyrosyl residues at the Na+ site on the intestinal Na+/glucose cotransporter. J Biol Chem 260: 6026–6031PubMedGoogle Scholar
  5. 5.
    Wright EM, Peerce BE (1984) Identification and conformational changes of the intestinal proline carrier. J Biol Chem 259: 14993–14996PubMedGoogle Scholar
  6. 6.
    Peerce BE (1989) Identification of the intestinal Na+/phosphate cotransporter. Am J Physiol 256: 6645–6652Google Scholar
  7. 7.
    Peerce BE, Wright EM (1986) Distance between substrate sites on the glucose/glucose cotransporter by fluorescence energy transfer. Proc Natl Acad Sci USA 83: 8092–8096PubMedCrossRefGoogle Scholar
  8. 8.
    Peerce BE, Clarke RD (1990) Isolation and reconstitution of the intestinal Na+/glucose cotransporter. J Biol Chem 265: 173 1–1736Google Scholar
  9. 9.
    Radian R, Bendahan A, Kanner BI (1986) Purification and identification of the functional sodium- and chloride-coupled y-aminobutyric acid transport glycoprotein from rat brain. J Biol Chem 261: 15437–15441PubMedGoogle Scholar
  10. 10.
    Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA transporter. Science 249: 1303–1306PubMedCrossRefGoogle Scholar
  11. 11.
    Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987) Expression cloning and cDNA sequencing of the Na+/glucose cotransporter. Nature 330: 379–381PubMedCrossRefGoogle Scholar
  12. 12.
    Birnir B, Lee H-S, Hediger MA, Wright EM (1990) Expression and characterization of the intestinal Na+/glucose cotransporter in COS-7 cells. Biochim Biophys Acta 1048: 100–104PubMedCrossRefGoogle Scholar
  13. 13.
    Hediger MA, Turk E, Wright EM (1989) Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters. Proc Natl Acad Sci USA 86: 5748–5752PubMedCrossRefGoogle Scholar
  14. 14.
    Coady MJ, Pajor AM, Toloza EM, Wright EM (1990) Expression of mammalian renal transporters in Xenopus laevis oocytes. Arch Biochem Biophys 283: 130–134PubMedCrossRefGoogle Scholar
  15. 15.
    Coady MJ, Pajor AM, Wright EM (1990) Sequence homologies amongst intestinal and renal Na+/glucose cotransporters. Am J Physiol (Cell Physiol) 259: C605 - C610Google Scholar

Copyright information

© Springer Japan 1991

Authors and Affiliations

  • Ernest M. Wright
    • 1
  1. 1.Department of PhysiologyUCLA School of MedicineLos AngelesUSA

Personalised recommendations