Skip to main content

Classification and Characterization of Types of Distal Acidification Defects in Humans

  • Chapter
Nephrology
  • 11 Accesses

Abstract

The distal renal tubular acidosis (RTA) syndromes are usually characterized by the presence of a hyperchloremic type of metabolic acidosis often associated to either hypokalemia (classic RTA) or hyperkalemia (hyperkalemic types of RTA). Some patients, however, have subtle defects in urinary acidification not manifested by hyperchloremic metabolic acidosis. The identification and classification of the various types of RTA are best approached from a mechanistic point of view and should take into consideration the site of the nephron responsible for the defect in acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battle DC (1989) Renal tubular acidosis. In: Seldin DW, Giebisch G (eds) The regulation of acid-base balance. Raven, New York, pp 353–390

    Google Scholar 

  2. Steinmetz PR, Lawson WJ (1970) Defect in urinary acidification induced in vitro by amphotericin B. J Clin Invest 49: 596–601

    Article  PubMed  CAS  Google Scholar 

  3. Arruda JAL, Kurtzman NA (1980) Mechanism and classification of deranged distal urinary acidification. Am J Physiol 8: F515–523

    Google Scholar 

  4. Battle DC, Kurtzman NA (1982) Distal renal tubular acidosis: Pathogenesis and classification. Am J Kidney Dis 1: 128–144

    Google Scholar 

  5. DuBose TD Jr, Alpern RJ (1989) In: The metabolic basis of inherited disease. McGraw Hill pp 2539–2568

    Google Scholar 

  6. DuBose TD Jr, Calflisch CR (1985) Validation of the difference in urine and blood carbon dioxide transport during bicarbonate loading as an index of distal nephron acidification in experimental models of distal renal tubular acidosis. J Clin Invest 75: 1116–1123

    Article  PubMed  Google Scholar 

  7. Battle DC, Sabatini S, Kurtzman NA (1988) On the mechanism of toluene-induced renal tubular acidosis. Nephron 49: 210–218

    Article  Google Scholar 

  8. Battle DC, Sehy JT, Roseman MK, Arruda JAL, Kurtzman NA (1981) Clinical and pathophysiologic spectrum of acquired distal renal tubular acidosis. Kidney Int 20: 389–396

    Google Scholar 

  9. Battle DC, Moses MF, Manaligod J, Arruda JAL, Kurtzman NA (1981) The pathogenesis of hyperchloremic metabolic acidosis associated with renal transplantation. Am J Med 70: 786–796

    Article  Google Scholar 

  10. Battle DC (1986) Segmental characterization of defects in collecting tubule acidification. Kidney Int 30: 546–553

    Article  Google Scholar 

  11. Battle DC, Hizon M, Cohen E, Gutterman C, Gupta R (1988) The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N. Engl J Med 318: 594–599

    Article  Google Scholar 

  12. Halperin ML, Goldstein MB, Haig A, et al. (1974) Studies on the pathogenesis of type 1 (distal) renal tubular acidosis as revealed by the urinary pCO2 tensions. J Clin Invest 53: 669–677

    Article  PubMed  CAS  Google Scholar 

  13. Battle DC (1986) Sodium-dependent urinary acidification in patients with aldosterone deficiency and adrenalectomized rats. Metabolism 35: 852–860

    Article  Google Scholar 

  14. Battle DC (1981) Hyperkalemic hyperchloremic metabolic acidosis associated with selective aldosterone deficiency and distal renal tubular acidosis. Semin Nephrol 1: 260–274

    Google Scholar 

  15. Sebastian A, Schambelan M, Lindenfeld S, et al. (1977) Amelioration of metabolic acidosis with fluorocortisone therapy in hyporeninemic hypoaldosteronism. N Engl J Med 297: 576–589

    Article  PubMed  CAS  Google Scholar 

  16. Battle DC, Grupp M, Gaviria M, Kurtzman NA (1982) Distal renal tubular acidosis with intact ability to lower urine pH. Am J Med 72: 751–7510

    Article  Google Scholar 

  17. Battle DC, Gaviria M, Grupp M, Arruda JAL, Wynn J, Kurtzman NA (1982) Distal nephron function in patients receiving chronic lithium therapy. Kidney Int 21: 477–485

    Article  Google Scholar 

  18. Laski ME, Kurtzman NA (1983) Characterization of acidification in the cortical and medullary collecting tubule of the rabbit. J Clin Invest 72: 2050–2059

    Article  PubMed  CAS  Google Scholar 

  19. Battle DC, Arruda JAL, Kurtzman NA (1981) Hyperkalemic distal renal tubular acidosis associated with obstructive uropathy. N Engl J Med 304: 373–380

    Article  Google Scholar 

  20. Schambelan M, Sebastian A, Rector FC Jr (1981) Mineralocorticoid-resistant renal hyperkalemia without salt wasting (type II pseudohypoaldosteronism): Role of increased renal chloride reabsorption. Kidney Int 19: 716

    Article  PubMed  CAS  Google Scholar 

  21. Rodriguez-Soriano J, Boichis H, Edelmann CM Jr (1967) Bicarbonate reabsorption and hydrogen ion excretion in children with renal tubular acidosis. J Pediatr 71: 802–813

    Article  Google Scholar 

  22. Caruana RI, Buckalew VM Jr (1988) The syndrome of distal (Type I) renal tubular acidosis. Medicine, ( Baltimore ) 67: 84

    Article  PubMed  CAS  Google Scholar 

  23. Sebastian A, McSherry E, Morris RC Jr (1971) Renal potassium wasting in renal tubular acidosis ( RTA ). J Clin Invest 50: 667

    Article  PubMed  CAS  Google Scholar 

  24. Sebastian A, McSherry E, Morris RC Jr (1976) Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with Type I, classic renal tubular acidosis. J Clin Invest 58: 454–469

    Article  PubMed  CAS  Google Scholar 

  25. Wingo CS, Straub SC (1989) Active Proton Secretion and Potassium Absorption in the Rabbit Outer Medullary Collecting Duct. J Clin Invest 84: 361–365

    Article  PubMed  CAS  Google Scholar 

  26. Doucet A, Marsy S (1987) Characterization of K-ATPase activity in distal nephron: stimulation by potassium depletion. Am J Physiol 253 (Renal Fluid Electrolyte Physiol 22): F418 - F423

    PubMed  CAS  Google Scholar 

  27. Garg LC, Narang N (1988) Ouabain-insensitive K-adenosine triphosphatase in distal nephron segments of the rabbit. J Clin Invest 81: 1204–1208

    Article  PubMed  CAS  Google Scholar 

  28. Nilwarangkur S, Nimmannit S, Chaovakul V, Susaengrat W, Ong-aj-yooth S, Vasuvattakul S, Pidetcha P, Malasit P (1989) Endemic Primary Distal Renal Tubular Acidosis in Thailand. Q J Med 74: 275, 289–301

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Batlle, D.C., Keilani, T. (1991). Classification and Characterization of Types of Distal Acidification Defects in Humans. In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_121

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_121

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics