The Two Different Means of Achieving Dosage Compensation for X-linked Genes Employed by Drosophila and Mammals

  • Susumu Ohno
Part of the Monographs on Endocrinology book series (ENDOCRINOLOGY, volume 1)


As shown in the previous chapter, the X-linked genes of Drosophila are included in the euchromatic region which never becomes heterochromatic. The male is endowed with one dose, while the female receives two doses of the euchromatic region of the X. During the course of evolution of this insect, the dosage compensation mechanism must have developed one by one for each individual X-linked gene.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adinolfi, M., I. Bernini, V. Carcassi, B. Latte, A. G. Motulski e M. Siniscalco: Indagine genetiche sulla predisposizione al favismo. Acad. nat. Lincei, R. C., 28, 1–26 (1960).Google Scholar
  2. Barrow, E. M., W. R. Bullock, and J. B. Graham: The carrier state in PTC deficiency. J. Lab. clin. Med. 55, 936–946 (1960).PubMedGoogle Scholar
  3. Beutler, E., M. Yeh, and V. F. Fairbanks: The normal human female as a mosaic of X-chromosome activity: studies using the gene for G-6-PD deficiency as a marker. Proc. nat. Acad. Sci. (Wash.) 48, 9–16 (1962).PubMedCrossRefGoogle Scholar
  4. Davidson, R. G., H. M. Nitowsky, and B. Childs: Demonstration of two populations of cells in the human female heterozygous for glucose-6-phosphate dehydrogenase variants. Proc. nat. Acad. Sci. 50, 481–485 (1963).PubMedCrossRefGoogle Scholar
  5. Gans, M.: Etude génétique et physiologique du mutant z de Drosophila melanogaster. Bull. Biol. France Belg. Suppl. 38, 1–90 (1953).Google Scholar
  6. Isselbacher, K. J., E. P. Anderson, K. Kurahashi, and H. M. Kalckar: Congenital galactosemia, a single enzymatic block in galactose metabolism. Science 123, 635–636 (1956).PubMedCrossRefGoogle Scholar
  7. Kazazian, H. H. jr., W. J. Young, and B. Childs: X-linked 6-phosphogluconate dehydrogenase in Drosophila: Subunit associations. Science 150, 1601–1602 (1965).PubMedCrossRefGoogle Scholar
  8. Lyon, M. F.: Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373 (1961).PubMedCrossRefGoogle Scholar
  9. Müller, H. J.: Evidence of the precision of genetic adaptation. Harvey Lectures Ser. 43, 165–229 (1947–1948).Google Scholar
  10. Nishimura, E. T., T. Y. Kobara, S. Takahara, H. B. Hamilton, and S. C. Madden: Immunologie evidence of catalase deficiency in human hereditary acatalasemia. Lab. Invest. 10, 333–340 (1961).PubMedGoogle Scholar
  11. Rapaport, S. L., M. J. Patch, and F. J. Moore: Antihemophilic globulin levels in carriers of hemophilia A. J. clin. Invest. 39, 1619–1625 (1960).PubMedCrossRefGoogle Scholar
  12. Robinson, A.: The assay of galactokinase and galactose-1-phosphate uridyl transferase activity on human erythrocytes. J. exp. Med. 118, 359–370 (1963).PubMedCrossRefGoogle Scholar
  13. Stern, C.: Über die additive Wirkung multipler Allele. Biol. Zbl. 49, 241–290 (1929).Google Scholar
  14. Takahara, S., H. B. Hamilton, J. B. Neil, T. Y. Kobara, Y. Ogura, and E. T. Nishimura: Hypocatalasemia: a new genetic carrier state. J. clin. Invest. 39, 610–619 (1960).PubMedCrossRefGoogle Scholar
  15. Tanaka, K. R., W. N. Valentine, and S. Miwa: Pyruvate kinase (PK) deficiency hereditary nonspherocytic hemolytic anemia. Blood 19, 267–268 (1962).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1966

Authors and Affiliations

  • Susumu Ohno
    • 1
  1. 1.Department of BiologyCity of Hope Medical CenterDuarteUSA

Personalised recommendations