Skip to main content

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 74 ))

Abstract

Less than two decades ago Sutherland and Rall (1958; Rall et al., 1957) discovered a heat stable factor now known as adenosine 3′,5′-monophosphate, which accumulated in particulate fractions of liver homogenates exposed to epinephrine. This factor activated the breakdown of glycogen by soluble cytoplasmic enzymes. Although epinephrine activates glycogenolysis in intact hepatocytes, the hormone has no such effect on the soluble enzymes. Sutherland and Rall (1960; Rall and Sutherland, 1958, 1961, 1962) proposed that epinephrine might trigger the glycogenolytic response of hepatocytes by activating the synthesis of this nucleotide (cyclic AMP) whose structure (Fig. 1) by then had been shown to contain a unique cyclic phosphate bond (Lipkin et al., 1959). The polypeptide hormone glucagon also triggers the glycogenolytic response of liver, and activates the synthesis of cyclic AMP. From these and related observations on the actions of other hormones, the concept arose that cyclic AMP functioned as an intracellular “second messenger”, synthesized in response to certain hormones and which, by activating the appropriate sequence of enzymes, produced the specific biologic response of the target cell to the hormone (Sutherland et al., 1965).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdulla, Y.H., Hamadah, K.: 3′,5′-Cyclic adenosine monophosphate in depression and mania. Lancet 1970I, 378–381.

    Google Scholar 

  • Adinolfi, A.M., Schmidt, S.Y.: Cytochemical localization of cyclic nucleotide phosphodiesterase activity at developing synapses. Brain Res. 76, 21–31 (1974).

    CAS  PubMed  Google Scholar 

  • Aghajanian, G.K., Haigler, H.J., Bloom, F.E.: Lysergic acid diethylamide and serotonin: direct actions on serotonin-containing neurons in rat brain. Life Sci. 11, 615–622 (1972).

    CAS  Google Scholar 

  • Amer, M.S., Kreighbaum, E.: Cyclic nucleotide phosphodiesterase: properties, activators, inhibitors, structure-activity relationships and possible role in drug development. J. pharm. Sci. 64, 1–37 (1975).

    CAS  Google Scholar 

  • Anagnoste, B., Shirron, C., Friedman, E., Goldstein, M.: Effect of dibutyryl cyclic adenosine monophosphate on C14 dopamine synthesis in rat brain striatal slices. J. Pharmacol. exp. Ther. 191, 370–376 (1974).

    CAS  PubMed  Google Scholar 

  • Anderson, E.G., Haas, H., Hosli, L.: Comparison of effects of noradrenaline and histamine with cyclic AMP on brain stem neurones. Brain Res. 49, 471–475 (1973a).

    CAS  PubMed  Google Scholar 

  • Anderson, W.B., Russell, T.R., Carchman, R.A., Pastan, I.: Interrelationship between adenylate cyclase activity, adenosine 3′,5′-cyclic monophosphate levels, and growth of cells in culture. Proc. nat. Acad. Sci. (Wash.) 70, 3802–3805 (1973b).

    CAS  Google Scholar 

  • Appleman, M.M., Terasaki, W.L.: The regulation of cyclic nucleotide phosphodiesterase. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press (in press).

    Google Scholar 

  • Appleman, M.M., Thompson, W.J., Russell, T.R.: Cyclic nucleotide phosphodiesterases. In: Advances in Cyclic Nucleotide Research, vol. 3. New York: Raven Press 1973.

    Google Scholar 

  • Arbuthnott, G.W., Attree, T.J., Eccleston, D., Loose, R.W., Martin, M.J.: Is adenylate cyclase the dopamine receptor. Med. biol. III. 52, 350–353 (1974).

    CAS  Google Scholar 

  • Ascher, P.: Excitatory effects of dopamine on molluscan neurons. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1973.

    Google Scholar 

  • Ashby, C.D., Walsh, D.A.: Characterization of the interaction of a protein inhibitor with adenosine 3′,5′-monophosphate-dependent protein kinases. J. biol. Chem. 247, 6637–6642 (1972).

    CAS  PubMed  Google Scholar 

  • Ashman, D.F., Lipton, R., Melicow, M.M., Price, T.D.: Isolation of adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate from rat urine. Biochem. biophys. Res. Commun. 11, 330–334 (1963).

    CAS  Google Scholar 

  • Atkinson, D.E.: Citrate in the regulation of energy metabolism. In: Metabolic Roles of Citrate. New York: Academic Press 1968.

    Google Scholar 

  • Aurbach, G.D., Fedak, S.A., Woodard, C.J., Palmer, J.S., Hauser, D., Troxler, F.: β-adrenergic receptor: stereospecific interaction of iodinated β-blocking agent with high affinity site. Science 186, 1223–1224 (1974).

    CAS  PubMed  Google Scholar 

  • Axelrod, J.: Noradrenaline: fate and control of its biosynthesis. Science 173, 598–606 (1971).

    CAS  PubMed  Google Scholar 

  • Barker, J.L., Crayton, J., Nicoll, R.: Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J. Physiol. (Lond.) 218, 19–32 (1971).

    CAS  Google Scholar 

  • Batzri, S., Selinger, Z., Schramm, M.: Potassium ion release and enzyme secretion: adrenergic regulation by α and β receptors. Science 174, 1029–1031 (1971).

    CAS  PubMed  Google Scholar 

  • Baudry, M., Martres, M-P., Schwartz, J-C.: H1 and H2 receptors in the histamine-induced accumulation of cyclic AMP in guinea pig slices. Nature (Lond.) 253, 362–363 (1975).

    CAS  Google Scholar 

  • Baylor, D.A., Fuortes, M.G.F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (Lond.) 207, 77–92 (1970).

    CAS  Google Scholar 

  • Beavo, J.A., Hardman, J.G., Sutherland, E.W.: Hydrolysis of cyclic guanosine and adenosine 3′,5′-monophosphate by rat and bovine tissues. J. biol. Chem. 245, 5649–5655 (1970).

    CAS  PubMed  Google Scholar 

  • Beer, B., Chasin, M., Clody, D.E., Vogel, J.R., Horovitz, Z.P.: Cyclic adenosine monophosphate phosphodiesterase in brain: Effect on anxiety. Science 176, 428–430 (1972).

    CAS  PubMed  Google Scholar 

  • Bensinger, R.E., Fletcher, R.T., Chader, G.J.: Guanylate cyclase: inhibition by light in retinal photoreceptors. Science 183, 86–87 (1974).

    CAS  PubMed  Google Scholar 

  • Berg, J.S.V.: Inhibitory effects of dibutyryl and cyclic AMP on the compound action potential in the frog (Rana Pipiens) sciatic nerve. Experientia (Basel) 30, 1025–1026 (1974).

    Google Scholar 

  • Berger, B., Tassin, J.P., Blanc, O., Moyne, M.A., Thierry, A.M.: Histochemical confirmation for dopaminergic innervation of rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res. 81, 332–337 (1974).

    CAS  PubMed  Google Scholar 

  • Berkowitz, B.A., Tarver, J.H., Spector, S.: Release of norepinephrine in the central nervous system by theophylline and caffeine. Europ. J. Pharmacol. 10, 64–71 (1970).

    CAS  Google Scholar 

  • Berne, R.M., Rubio, R., Curnish, R.R.: Release of adenosine from ischemic brain. Circulat. Res. 35, 262–271 (1974).

    CAS  Google Scholar 

  • Berridge, M.J., Prince, W.T.: The electrical response of isolated salivary glands during stimulation with 5-hydroxytryptamine and cyclic AMP. Phil. Trans. B 262, 111–120 (1971).

    CAS  Google Scholar 

  • Berridge, M.J., Prince, W.T.: Transepithelial potential changes during stimulation of isolated salivary glands with 5-hydroxytryptamine and cyclic AMP. J. exp. Biol. 56, 139–153 (1972).

    CAS  PubMed  Google Scholar 

  • Berti, F., Trabucchi, M., Bernareggi, V., Fumagalli, R.: The effect of prostaglandins on cyclic AMP formation in cerebral cortex of different mammalian species. Pharmacol. Res. Commun. 4, 253–259 (1972).

    CAS  Google Scholar 

  • Bianchi, C.P.: Cell Calcium. New York: Appleton-Century-Crofts 1964.

    Google Scholar 

  • Bilzekian, J.P., Aurbach, G.D.: The effects of nucleotides on the expression of β-adrenergic adenylate cyclase activity in membranes from turkey erythrocytes. J. biol. Chem. 249, 157–161 (1974).

    Google Scholar 

  • Birnbaumer, L., Yang, P.C.: Studies on receptor-mediated activation of adenylyl cyclases. I. Preparation and description of general properties of an adenylyl cyclase system in beef renal medullary membranes sensitive to neurohypophyseal hormones. J. biol. Chem. 249, 7848–7856 (1974a).

    CAS  PubMed  Google Scholar 

  • Birnbaumer, L., Yang, P.C.: Studies on receptor-mediated activation of adenylyl cyclases. III. Regulation by purine nucleotides of the activation of adenylyl cyclases from target organs for prostaglandins, luteinizing hormone, neurohypophyseal hormones and catecholamines. Tissue and hormone-dependent variations. J. biol. Chem. 249, 7867–7873 (1974b).

    CAS  PubMed  Google Scholar 

  • Birnbaumer, L., Nakahara, T., Yang, P.C.: Studies on receptor-mediated activation of adenylyl cyclases. II. Nucleotide and nucleoside regulation of the activities of the beef renal medullary adenylyl cyclase and their stimulation by neurohypophyseal hormones. J. biol. Chem. 249 7857–7866 (1974).

    CAS  PubMed  Google Scholar 

  • Bitensky, M.W., Gorman, R.E., Miller, W.H.: Adenyl cyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors. Proc. nat. Acad. Sci. (Wash) 68, 561–562 (1971).

    CAS  Google Scholar 

  • Bitensky, M.W., Miki, N., Marcus, F.R., Keirns, J.J.: The role of cyclic nucleotides in visual excitation. Life Sci. 13, 1451–1472 (1973).

    CAS  PubMed  Google Scholar 

  • Björklund, A., Cegrell, L., Falck, B., Ritzen, M., Rosengren, E.: Dopamine-containing cells in sympathetic ganglia. Acta physiol. scand. 78, 334–338 (1970).

    PubMed  Google Scholar 

  • Björklund, A., Katzman, R., Stenevi, U., West, K.: Development and growth of axonal sprouts from NA and 5-hydroxytryptamine neurons in rat spinal cord. Brain Res. 31, 21–33 (1971).

    PubMed  Google Scholar 

  • Black, A.C., Bhalla, R.C., Williams, T.H.: Species differences in the adenyl cyclase responsiveness to neurotransmitters in the superior cervical ganglion. Abstr. 4th Annu. Meeting Soc. Neurosci St. Louis, p. 144 (1974).

    Google Scholar 

  • Blecher, M., Hunt, N.H.: Enzymatic deacylation of mono- and dibutyryl derivatives of cyclic adenosine 3′,5′-monophosphate by extracts of rat tissues. J. biol. Chem. 247, 7479–7484 (1972).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E.: Electrophysiological pharmacology of single nerve cells. In: Psychopharmacology — A Ten Year Progress Report. Washington, D.C.: U.S. Govt. Printing Office 1968.

    Google Scholar 

  • Bloom, F.E.: Fine structural changes in rat brain after intracisternal injection of 6-hydroxydopamine. In: 6-Hydroxydopamine and Catecholamine Neurons. Amsterdam: North Holland Publishing Co. 1971.

    Google Scholar 

  • Bloom, F.E.: Amino acids and polypeptides in neuronal function. Neurosci. Res. Program Bull 10, 122–251 (1972).

    Google Scholar 

  • Bloom, F.E.: Ultrastructural identification of catecholamine-containing central synaptic terminals. J. Histochem. Cytochem. 21, 333–348 (1973a).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E.: Dynamic synaptic communication: finding the vocabulary. Brain Res. 62, 299–305 (1973b).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E.: To spritz or not to spritz: the doubtful value of aimless iontophoresis. Life Sci. 14, 1819–1834 (1974).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E., Costa, E., Salmoiraghi, G.C.: Anesthesia and the responsiveness of individual neurons of the cat’s caudate nucleus to acetylcholine, norepinephrine, and dopamine administered by microelectrophoresis. J. Pharmacol. 150, 244–255 (1965).

    CAS  Google Scholar 

  • Bloom, F.E., Hoffer, B.J.: Norepinephrine as a central synaptic transmitter. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1973.

    Google Scholar 

  • Bloom, F.E., Hoffer, B.J., Battenberg, E.F., Siggins, G.R., Steiner, A.L., Parker, C.W., Wedner, H.J.: Adenosine 3′,5′-monophosphate is localized in cerebellar neurons: Immunofluorescence evidence. Science 177, 436–438 (1972).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E., Hoffer, B.J., Siggins, G.R.: Studies on norepinephrine containing afferents to Purkinje cells of rat cerebellum. I. Localization of the fibers and their synapses. Brain Res. 25, 501–521 (1971).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E., Hoffer, B.J., Siggins, G.R.: Norepinephrine mediated synapses. A model system for neuropsychopharmacology. Biol. Psychiat. 4, 157–177 (1972).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E., Krebs, H., Nicholson, J., Pickel, V.: The noradrenergic innervation of cerebellar Purkinje cells: Localization, function, synaptogenesis, and axonal sprouting of locus coeruleus. In: Dynamics of Degeneration and Growth in Neurons. England: Pergamon Press 1974b.

    Google Scholar 

  • Bloom, F.E., Siggins, G.R., Hoffer, B.J.: Interpreting the failures to confirm the depression of cerebellar Purkinje cells by cyclic AMP. Science 185, 627–629 (1974a).

    CAS  PubMed  Google Scholar 

  • Bloom, F.E., Siggins, G.R., Hoffer, B.J., Segal, M., Oliver, A.P.: The role of cyclic nucleotides in the central synaptic actions of catecholamines. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press 1975.

    Google Scholar 

  • Bloom, S., Sweat, F.W.: Covariance of myocardial cyclic AMP and calcium during β-adrenergic stimulation in vivo. Res. Commun. Chem. Pathol. Pharmacol. 8, 505–514 (1974).

    CAS  PubMed  Google Scholar 

  • Blumberg, J.B., Sulser, F.: The effect of antipsychotic drugs on the cyclic 3′,5′ adenosine monophosphate system on rat forebrain. Fed. Proc. 33, 286 (1974).

    Google Scholar 

  • Booth, D.A.: Unlearned and learned effects of intrahypothalamic cyclic AMP injection on feeding. Nature (Lond.) New Biol. 237, 222–224 (1972).

    CAS  Google Scholar 

  • Borasio, P.G., Vassalle, M.: Dibutyryl cyclic AMP and potassium transport in cardiac Purkinje fibers. Amer. J. Physiol. 226, 1232–1237 (1974).

    CAS  PubMed  Google Scholar 

  • Borgeat, P., Chavancy, G., Dupont, A., Labrie, F., Arimura, A., Schally, A.V.: Stimulation of adenosine 3′,5′-cyclic monophosphate accumulation in anterior pituitary gland in vitro by synthetic luteinizing hormone-releasing hormone. Proc. nat. Acad. Sci. (Wash.) 69, 2677–2681 (1972).

    CAS  Google Scholar 

  • Bradshaw, C.M., Szabadi, E., Roberts, M.H.T.: The reflection of ejecting and retaining currents in the time course of neuronal responses to microelectrophoretically applied drugs. J. Pharm. Pharmacol. 25, 513–520 (1973).

    CAS  PubMed  Google Scholar 

  • Bray, J.J., Kon, C.M., Breckenridge, B.M.: Adenyl cyclase cyclic nucleotide phosphodiesterase and axoplasmic flow. Brain Res. 26, 385–394 (1971).

    CAS  PubMed  Google Scholar 

  • Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Riuier, J., Guillemin, R.: Hypothalamic polypeptide that inhibits the secretion of immuno-reactive pituitary growth hormone. Science 179, 77–79 (1973).

    CAS  PubMed  Google Scholar 

  • Breckenridge, B.M.: The measurement of cyclic adenylate in tissues. Proc. nat. Acad. Sci. (Wash.) 57, 1580–1586 (1964).

    Google Scholar 

  • Breckenridge, B.M., Burn, J.H., Matschinsky, F.M.: Theophylline, epinephrine, and neostigmine facilitation of neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 57, 1893–1897 (1967).

    CAS  Google Scholar 

  • Breckenridge, B.M., Johnston, R.E.: Cyclic 3′,5′-nucleotide phosphodiesterase in brain. J. Histochem. Cytochem. 17, 505–511 (1969).

    CAS  PubMed  Google Scholar 

  • Breckenridge, B.M., Lisk, R.D.: Cyclic adenylate and hypothalamic regulatory functions. Proc. Soc. exp. Biol. (N.Y.) 131, 934–935 (1969).

    CAS  Google Scholar 

  • Brooker, G.: Oscillation of cyclic adenosine monophosphate concentration during the myocardial contraction cycle. Science 182, 933–934 (1973).

    CAS  PubMed  Google Scholar 

  • Broström, C.O., Huang, Y-C., Breckenridge, B. McL., Wolff, D.J.: Identification of a calciumbinding protein as a calcium-dependent regulation of brain adenylate cyclase. Proc. nat. Acad. Sci. (Wash.) 72, 64–68 (1975).

    Google Scholar 

  • Brown, J.H., Makman, M.H.: Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3′,5′-cyclic monophosphate formation in intact retina. Proc. nat. Acad. Sci. (Wash.) 69, 539–543 (1972).

    CAS  Google Scholar 

  • Brown, J.H., Makman, M.H.: Influence of neuroleptic drugs and apomorphine on dopamine sensitive adenylate cyclase of retina. J. Neurochem. 21, 477–479 (1973).

    CAS  PubMed  Google Scholar 

  • Brunton, W.J.: Beta-adrenergic stimulation of transmembrane potential and short circuit current of isolated rabbit oviduct. Nature (Lond.) New Biol. 236, 12–14 (1972).

    CAS  Google Scholar 

  • Bülbring, E., Tomita, T.: Increase of membrane conductance by adrenaline in the smooth muscle of guinea-pig taenia coli. Proc. roy. Soc. B 172, 89–102 (1969).

    Google Scholar 

  • Bunney, B.S., Aghajanian, G.K.: Electrophysiological effects of amphetamine in dopaminergic neurons. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1973.

    Google Scholar 

  • Burgus, R., Guillemin, R.: Hypothalamic releasing factors. Ann. Rev. Biochem. 39, 490–526 (1970).

    Google Scholar 

  • Burnstock, G.: Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972).

    CAS  PubMed  Google Scholar 

  • Carlsoo, B., Danielsson, A., Marklund, S., Stigbrand, T.: Effects of 3′,5′-cyclic adenosine monophosphate, 5-hydroxytryptamine, noradrenaline and theophylline on the simultaneous release of peroxidase and amylase from the guinea pig submandibular gland. Acta physiol. scand. 91 203–210 (1974).

    CAS  PubMed  Google Scholar 

  • Carnegie, P.R., Kemp, B.E., Dunkley, P.R., Murray, A.W.: Phosphorylation of myelin basic protein by an adenosine 3′,5′-cyclic monophosphate-dependent protein kinase. Biochem. J. 135, 569–572 (1973).

    CAS  PubMed  Google Scholar 

  • Carpenter, D.O., Gaubatz, G.L.: Octopamine receptors on Aplysia neurones mediate hyperpolarization by increasing membrane conductance. Nature (Lond.) 252, 483–485 (1974).

    CAS  Google Scholar 

  • Casnellie, J.E., Greengard, P.: Guanosine 3′:5′-cyclic monophosphate-dependent phosphorylation of endogenous substrate proteins in membranes of mammalian smooth muscle. Proc. nat Acad Sci. (Wash.) 71, 1891–1895 (1974).

    CAS  Google Scholar 

  • Cedar, H., Kandel, E.R., Schwartz, J.H.: Cyclic adenosine monophosphate in the nervous system of aplysia californica. I. Increased synthesis in response to synaptic stimulation. J. gen. Physiol 60, 558–569 (1972).

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cedar, H., Schwartz, J.H.: Cyclic adenosine monophosphate in the nervous system of aplysia californica: II. Effect of serotonin and dopamine. J. gen. Physiol. 60, 570–587 (1972).

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chalazonitis, A., Greene, L.A.: Enhancement in excitability properties of mouse neuroblastoma cells cultured in the presence of dibutyryl cyclic AMP. Brain Res. 72, 340–345 (1974).

    CAS  PubMed  Google Scholar 

  • Chasin, M., Mamrak, F., Samaniego, S.G.: Preparation and properties of a cell-free, hormonally responsive adenylate cyclase from guinea pig brain. J. Neurochem. 22, 1031–1038 (1974).

    CAS  PubMed  Google Scholar 

  • Chasin, M., Mamrak, F., Samaniego, S.G., Hess, S.M.: Characteristics of the catecholamine and histamine receptor sites mediating accumulation of cyclic adenosine 3′,5′-monophosphate in guinea pig brain. J. Neurochem. 21, 1415–1427 (1973).

    CAS  PubMed  Google Scholar 

  • Chasin, M., Rivkin, I., Mamrak, F., Samaniego, G., Hess, S.M.: α- and β-adrenergic receptors as mediators of accumulation of cyclic adenosine 3′,5′-monophosphate in specific areas of guinea pig brain. J. biol. Chem. 246, 3037–3041 (1971).

    CAS  PubMed  Google Scholar 

  • Chatzkel, S., Zimmerman, I., Berg, A.: Modulation of cyclic AMP synthesis in the cat superior cervical ganglion by short term presynaptic stimulation. Brain Res. 80, 523–526 (1974).

    CAS  PubMed  Google Scholar 

  • Cheung, W.Y.: Properties of cyclic 3′,5′-nucleotide phosphodiesterase from rat brain Biochemistry (Wash.) 6, 1079–1087 (1970).

    Google Scholar 

  • Chiarandini, D.J., Bentley, P.J.: The effects of verapamil on metabolism and contractility of the toad skeletal muscle. J. Pharmacol. exp. Ther. 186, 52–59 (1973).

    CAS  PubMed  Google Scholar 

  • Chou, W.S., Ho, A.K.S., Loh, H.H.: Neurohormones on brain adenyl cyclase activity in vivo. Nature (Lond.) New Biol. 233, 280–281 (1971).

    CAS  Google Scholar 

  • Chu, N-S., Bloom, F.E.: Norepinephrine-containing neurons: changes in spontaneous discharge patterns during unrestrained sleeping and waking. Science 179, 908–910 (1973).

    CAS  PubMed  Google Scholar 

  • Chu, N-S., Bloom, F.E.: The catecholamine-containing neurons in the cat dorso-lateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res 66 1–21 (1974a).

    Google Scholar 

  • Chu, N-S., Bloom, F.E.: Activity patterns of catecholamine-containing pontine neurons in the dorsolateral tegmentum of unrestrained cats. J. Neurobiol. 5, 527–544 (1974b).

    CAS  PubMed  Google Scholar 

  • Huang, D-M., Costa, E.: Biosynthesis of tyrosine hydroxylase in rat adrenal medulla after exposure to cold. Proc. nat. Acad. Sci. (Wash.) 71, 4570–4574 (1974).

    Google Scholar 

  • Clark, R.B., Gross, R., Su, Y-F., Perkins, J.P.: Regulation of adenosine 3′,5′-monophosphate content in human astrocytoma cells by adenosine and adenine nucleotides. J. biol. Chem. 249, 5296–5303 (1974).

    CAS  PubMed  Google Scholar 

  • Clark, R.B., Perkins, J.P.: Regulation of adenosine 3′,5′-monophosphate concentration in cultured human astrocytoma cells by catecholamines and histamine. Proc. nat. Acad. Sci. (Wash.) 68, 2757–2760 (1971).

    CAS  Google Scholar 

  • Clark, W.G., Cumby, H.R., Davis, H.E.: The hyperthermic effect of intracerebroventricular cholera enterotoxin in the unanesthetized cat. J. Physiol. (Lond.) 240, 493–504 (1974).

    CAS  Google Scholar 

  • Clarke, G., Hill, R.G., Simmonds, M.A.: Microiontophoretic release of drugs from micropipettes: use of 24Na as a model. Brit. J. Pharmacol. 48, 156–161 (1973).

    CAS  Google Scholar 

  • Clement-Cormier, Y.C., Kebabian, J.W., Petzold, G.I., Greengard, P.: Dopamine-sensitive adenylate cyclase in mammalian brain: a possible site of action of antipsychotic drugs. Proc. nat. Acad. Sci. (Wash.) 71, 1113–1171 (1974).

    CAS  Google Scholar 

  • Cohn, M.L., Cohn, M., Taylor, F.H.: Norepinephrine — an antagonist of dibutyryl cyclic AMP in the regulation of narcosis in the rat. Res. Commun. Chem. Pathol. Pharmacol. 7, 687–699 (1974).

    CAS  PubMed  Google Scholar 

  • Connor, J.D.: Caudate nucleus neurones: correlation of the effects of substantia nigra stimulation with iontophoretic dopamine. J. Physiol. (Lond.) 208, 691–703 (1970).

    CAS  Google Scholar 

  • Contreras, E., Castillo, S., Quijada, L.: Effect of drugs that modify 3′,5′-AMP concentrations on morphine analgesia. J. Pharm. Pharmacol. 24, 65–66 (1972).

    CAS  PubMed  Google Scholar 

  • Corrodi, H., Fuxe, K., Jonsson, G.: Effects of caffeine on central monoamine neurons. J. Pharm. Pharmacol. 24, 155–158 (1972).

    CAS  PubMed  Google Scholar 

  • Costa, E., Guidotti, A., Hanbauer, I.: Do cyclic nucleotides promote the trans-synaptic induction of tyrosine hydroxylase. Life Sci. 14, 1169–1188 (1974).

    CAS  PubMed  Google Scholar 

  • Couteaux, R.: Localization of cholinesterases at neuromuscular junctions. Int. Rev. Cytol. 4, 335–375 (1955).

    Google Scholar 

  • Crain, S.M., Pollack, E.D.: Restorative effects of cyclic AMP on complex bioelectric activities of cultured fetal rodent CNS tissues after acute Ca++ deprivation. J. Neurobiol. 4, 321–342 (1973).

    CAS  PubMed  Google Scholar 

  • Cramer, H., Johnson, D.G., Hanbauer, L, Silberstein, S.D., Kopin, I.J.: Accumulation of adenosine 3′,5′-monophosphate induced by catecholamines in the rat superior cervical ganglion In Vitro. Brain Res. 53, 97–104 (1973).

    CAS  PubMed  Google Scholar 

  • Cramer, H., Ng, L.K.Y., Chase, T.N.: Effect of probenecid on levels of cyclic AMP in human cerebro-spinal fluid. J. Neurochem. 19, 1601–1602 (1972).

    CAS  PubMed  Google Scholar 

  • Cuatrecasas, P.: Interaction of vibrio cholerae enterotoxin with cell membranes. Biochemistry 12, 3547–3581 (1973).

    CAS  PubMed  Google Scholar 

  • Cuatrecasas, P.: Membrane receptors. Ann. Rev. Biochem. 45, 169–214 (1974).

    Google Scholar 

  • Cuatrecasas, P.: Hormone receptors — their function in cell membranes and some problems related to methodology. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press 1975.

    Google Scholar 

  • Curtis, D.R.: Microelectrophoresis. In: Physical Techniques in Biological Research, vol. 5. New York: Academic Press 1964.

    Google Scholar 

  • Curtis, D.R., Johnston, G.A.R.: Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97–188 (1974).

    CAS  PubMed  Google Scholar 

  • Dale, H.H., Feldberg, W., Vogt, M.: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353–380 (1936).

    CAS  Google Scholar 

  • Dalton, C., Crowley, H.J., Sheppard, H., Schallek, W.: Regional cyclic nucleotide phosphodiesterase activity in cat central nervous system: effects of benzodiazepines. Proc. Soc. exp. Biol. (N.Y.) 145, 407–410 (1974).

    CAS  Google Scholar 

  • Daly, J.: The role of cyclic nucleotides in the nervous system. In: Handbook of Psychopharmacology. New York: Plenum Press 1975.

    Google Scholar 

  • Daly, J.W., Huang, M., Shimizu, H.: Regulation of cyclic AMP levels in brain tissue. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.

    Google Scholar 

  • Dambach, G., Friedmann, N.: Substrate-induced membrane potential changes in the perfused rat liver. Biochim. biophys. Acta (Amst.) 367, 366–370 (1974).

    CAS  Google Scholar 

  • Davidoff, R.A.: Gamma amino butyric acid antagonism and presynaptic inhibition in the frog spinal cord. Science 175, 331–333 (1972).

    CAS  PubMed  Google Scholar 

  • Deguchi, T., Axelrod, J.: Superinduction of serotonin N-acetyl-transferase and supersensitivity of adenyl cyclase to catecholamines in denervated pineal gland. Molec. Pharmacol. 9, 612–618 (1973).

    CAS  Google Scholar 

  • Delcastillo, J., Katz, B.: A comparison of acetylcholine and stable depolarizing agents. Proc. roy. Soc. B 146, 362–368 (1957).

    CAS  Google Scholar 

  • Dhalla, N.S., Sulakhe, P.V., McNamara, D.B.: Studies on the relationship between adenylate cyclase activity and calcium transport by cardiac sarcotubular membranes. Biochim. biophys. Acta (Amst.) 323, 276–284 (1973).

    CAS  Google Scholar 

  • Diamond, J.: Phosphorylase, calcium, and cyclic AMP in smooth-muscle contraction. Amer. J. Physiol. 225, 930–737 (1973).

    CAS  PubMed  Google Scholar 

  • Dousa, T., Hechter, O.: Lithium and brain adenyl cyclase. Lancet 1970I, 834–835.

    Google Scholar 

  • Drummond, G.I., Powell, C.A.: Analogues of adenosine 3′,5′-cyclic phosphate as activators of Phosphorylase b kinase and as substrates for cyclic 3′,5′-nucleotide phosphodiesterase. Molec. Pharmacol. 6, 24–30 (1970).

    CAS  Google Scholar 

  • Dun, N., Nishi, S.: Effects of dopamine on the superior cervical ganglion on the rabbit. J. Physiol. (Lond.) 239, 155–164 (1974).

    CAS  Google Scholar 

  • Ebstein, B., Roberge, C., Tabachnik, J., Goldstein, M.: The effect of dopamine and of apomorphine and dB-cAMP-induced stimulation of synaptosomal tyrosine hydroxylase. J. Pharm. Pharmacol 26, 975–977 (1974).

    CAS  PubMed  Google Scholar 

  • Eccles, J.C.: The Physiology of Synapses. New York: Academic Press 1964.

    Google Scholar 

  • Eccles, R., Libet, B.: Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J. Physiol. (Lond.) 157, 484 (1961).

    CAS  Google Scholar 

  • Edström, A., Kanje, M., Walum, E.: Effects of dibutyryl cyclic AMP and prostaglandin E1 on cultured human glioma cells. Exp. Cell Res. 85, 217–223 (1974).

    PubMed  Google Scholar 

  • Eipper, B.A.: Rat brain tubulin and protein kinase activity. J. biol. Chem. 249, 1398–1406 (1974).

    CAS  PubMed  Google Scholar 

  • Engberg, I., Flatman, J.A., Kadzlelawa, K.: The hyperpolarisation of motoneurones by electrophoretically applied amines and other agents. Acta physiol. scand. 91, 3A–4A (1974).

    Google Scholar 

  • Engberg, I., Marshall, K.C.: Mechanism of Noradrenaline hyperpolarization in spinal cord motoneurones of the cat. Acta physiol. scand. 83, 142–144 (1971).

    CAS  PubMed  Google Scholar 

  • Erankö, O., Harkonen, M.: Monoamine-containing small cells in the superior cervical ganglion of the rat and one organ composed of them. Acta physiol. scand. 63, 511–512 (1965).

    Google Scholar 

  • Fallon, E.F., Agrawal, R., Furth, E., Steiner, A.L., Cowden, R.: Cyclic guanosine and adenosine 3′,5′-monophosphates in canine thyroid: localization by immunofluorescence. Science 184 1089–1091 (1974).

    CAS  PubMed  Google Scholar 

  • Fatt, P., Katz, B.: An analysis of the endplate potential recorded with an intracellular electrode J. Physiol. (Lond.) 115, 320–370 (1951).

    CAS  Google Scholar 

  • Ferrendelli, J.A., Chang, M.M., Kinscherf, D.A.: Elevation of cyclic GMP levels in central nervous system by excitatory and inhibitory amino acids. J. Neurochem. 22, 535–540 (1974).

    CAS  PubMed  Google Scholar 

  • Ferrendelli, J.A., Kinscherf, D.A., Chang, M.M.: Regulation of levels of guanosine cyclic 3′,5′-monophosphate in the central nervous system: effects of depolarizing agents. Molec. Pharmacol 9, 445–454 (1973).

    CAS  Google Scholar 

  • Ferrendelli, J.A., Kinscherf, D.A., Kipnis, D.M.: Effects of amphetamine, chlorpromazine and reserpine on cyclic GMP and cyclic AMP levels in mouse cerebellum. Biochem. biophys Res Commun. 46, 2114–2120 (1972).

    CAS  PubMed  Google Scholar 

  • Ferrendelli, J.A., Steiner, A.L., McDougal, D.B., Kipnis, D.M.: The effect of oxotremorine and atropine on cGMP and cAMP levels in mouse cerebral cortex and cerebellum. Biochem biophys. Res. Commun. 41, 1061–1067 (1970).

    CAS  Google Scholar 

  • Field, M.: Mode of action of cholera toxin: stabilization of catecholamine-sensitive adenylate cyclase in turkey erythrocytes. Proc. nat. Acad. Sci. (Wash.) 71, 3299–3303 (1974).

    CAS  Google Scholar 

  • Fikus, M., Kwast-Welfeld, J., Kazi-Mierczuk, Z., Shugar, D.: Biochemical studies on some new analogues of adenosine-3′,5′-cyclic phosphate including isoguanosine-3′,5′-cyclic phosphate Acta biochim. pol. 21, 465–474 (1974).

    CAS  PubMed  Google Scholar 

  • Filler, R., Litwack, G.: Differences in macromolecular binding between cyclic AMP and its dibutyryl derivative in vitro. Biochem. biophys. Res. Commun. 52, 159–167 (1973).

    CAS  PubMed  Google Scholar 

  • Florendo, N.T., Barrnett, R.J., Greengard, P.: Cyclic 3′,5′-nucleotide phosphodiesterase: cytochemical localization in cerebral cortex. Science 173, 745–747 (1971).

    CAS  PubMed  Google Scholar 

  • Folbergrova, J.: Energy metabolism of mouse cerebral cortex during homocysteine convulsions. Brain Res. 81, 443–454 (1974).

    CAS  PubMed  Google Scholar 

  • Forn, J., Krishna, G.: Effects of biogenic amines on the rate of adenosine 3′,5′ monophosphate formation in brain slices of different animal species. Fed. Proc. 29, 480 (1970).

    Google Scholar 

  • Forn, J., Krishna, G.: Effect of norepinephrine, histamine, and other drugs on cyclic 3′,5′-AMP formation in brain slices of various animal species. Pharmacology (Basel) 5, 193–204 (1971).

    CAS  Google Scholar 

  • Forn, J., Krueger, B.K., Greengard, P.: Adenosine 3′,5′-monophosphate content in rat caudate nucleus. Demonstration of dopaminergic and adrenergic receptors. Science 186, 1118–1119 (1974).

    CAS  PubMed  Google Scholar 

  • Forn, J., Valdecasas, F.G.: Effects of lithium on brain adenyl cyclase activity. Biochem. Pharmacol. 20, 2773–2779 (1971).

    CAS  PubMed  Google Scholar 

  • Frederickson, R.C.A., Jordan, L.M., Phillis, J.W.: The action of noradrenaline on cortical neurons: effects of pH. Brain Res. 35, 556–560 (1971).

    CAS  PubMed  Google Scholar 

  • Frederickson, R.C.A., Jordan, L.M., Phillis, J.W.: A reappraisal of the actions of noradrenaline and 5-hydroxytryptamine on cerebral cortical neurons. Comp. Gen. Pharmacol. 3, 443–456 (1972).

    CAS  PubMed  Google Scholar 

  • Freedman, R., Hoffer, B.J.: Phenothiazine antagonism of the noradrenergic inhibition of cerebellar Purkinje neurons. J. Neurobiol. 6, 277–288 (1975).

    CAS  PubMed  Google Scholar 

  • Friedman, N., Somlyo, A.V., Somlyo, A.P.: Cyclic adenosine and guanosine monophosphate and glucagon: effect on liver membrane potentials. Science 171, 400–402 (1971).

    CAS  Google Scholar 

  • Froehlich, J.E., Rachmeler, M.: Effect of adenosine 3′,5′-cyclic monophosphate on cell proliferation. J. Cell. Biol. 55, 19–31 (1972).

    CAS  PubMed  Google Scholar 

  • Fumagalli, R., Bernareggi, V., Berti, F., Trabucchi, M.: Cyclic AMP formation in human brain: an in vitro stimulation by neurotransmitters. Life Sci. 10, 1111–1115 (1971).

    CAS  Google Scholar 

  • Fuxe, K., Hökfelt, T., Johansson, O., Jonsson, O., Lidbrink, P., Ljungdahl, A.: The origin of dopamine nerve terminals in limbic and frontal cortex. Evidence for meso-cortical dopamine neurons. Brain Res. 82, 349–355 (1974).

    CAS  Google Scholar 

  • Fuxe, K., Jonsson, G.: The histochemical fluorescence method for the demonstration of catecholamines: Theory, practice and application. J. Histochem. Cytochem. 21, 293–311 (1973).

    CAS  PubMed  Google Scholar 

  • Fuxe, K., Olson, L., Zotterman, Y.: Dynamics of Degeneration and Growth in Neurons. Oxford and New York: Pergamon 1974b.

    Google Scholar 

  • Fuxe, K., Ungerstedt, U.: Action of caffeine and theophylline on supersensitive dopamine receptors: considerable enhancement of receptor response to treatment with dopa and dopamine agonists. Med. biol. Ill. 52, 48–54 (1974).

    CAS  Google Scholar 

  • Gabballah, S., Popoff, C.: Cyclic 3′,5′-nucleotide phosphodiesterase in nerve endings of developing rat brain. Brain Res. 25, 220–222 (1971).

    Google Scholar 

  • Galindo, A., Krnjevic, K., Schwartz, S.: Microiontophoretic studies on neurones in the cuneate nucleus. J. Physiol. (Lond.) 158, 296–323 (1967).

    Google Scholar 

  • Garbarg, M., Barbin, G., Feger, J., Schwartz, J-C.: Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle. Science 186, 833–834 (1974).

    CAS  PubMed  Google Scholar 

  • Gardner, D., Kandel, E.R.: Diphasic postsynaptic potential: a chemical synapse capable of mediating conjoint excitation and inhibition. Science 176, 675–677 (1972).

    CAS  PubMed  Google Scholar 

  • George, W.J., Polson, J.B., O’Toole, A.G., Goldberg, N.D.: Elevation of guanosine 3′,5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc. nat. Acad. Sci. (Wash.) 66, 398–403 (1970).

    CAS  Google Scholar 

  • Gergely, J.: Some aspects of the role of the sarcoplasmic reticulum and the tropomyosin-troponin system in the control of muscle contraction by calcium ions. Circulat. Res. 34 and 35 (Suppl. III) 74–82 (1974).

    Google Scholar 

  • Gibson, D.A., Reichlin, S., Vernadakis, A.: 3H Uridine uptake and incorporation into RNA in the C-6 glial cells following dibutyryl cyclic AMP treatment. Brain Res. 81, 354–360 (1974).

    CAS  PubMed  Google Scholar 

  • Gilman, A.G.: The regulation of cyclic AMP metabolism in cultured cells of the nervous system. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972x.

    Google Scholar 

  • Gilman, A.G., Nirenberg, M.: Effect of catecholamines on the adenosine 3′,5′-cyclic concentrations of clonal satellite cells of neurons. Proc. nat. Acad. Sci. (Wash.) 68, 2165–2168 (1971a).

    CAS  Google Scholar 

  • Gilman, A.G., Nirenberg, M.: Regulation of adenosine 3′,5′-monophosphate metabolism in cultured neuroblastoma cells. Nature (Lond.) 234, 356–358 (1971 b).

    CAS  Google Scholar 

  • Gilman, A.G., Schrier, B.K.: Adenosine cyclic 3′,5′-monophosphate in fetal rat brain cell cultures. Molec. Pharmacol. 8, 410–416 (1972).

    CAS  Google Scholar 

  • Ginsborg, B.L.: Ion movements in junctional transmission. Pharmacol. Rev. 19, 289–316 (1967).

    CAS  PubMed  Google Scholar 

  • Godfraind, J.M., Pumain, R.: Cyclic adenosine monophosphate and norepinephrine: effect on Purkinje cells in rat cerebellar cortex. Science 174, 1257 (1971).

    CAS  PubMed  Google Scholar 

  • Goldberg, A.L., Singer, J.J.: Evidence for a role of cyclic AMP in neuromuscular transmission. Proc. nat. Acad. Sci. (Wash.) 64, 134–141 (1969).

    CAS  Google Scholar 

  • Goldberg, N.D.: The Yin Yang hypothesis of biological control: opposing influences of cyclic GMP and cyclic AMP in bidirectionally regulated systems. In: Advances in Cyclic Nucleotide Research, vol. 5. New York: Raven Press (in press).

    Google Scholar 

  • Goldberg, N.D., Dietz, S.B., O’Toole, A.G.: Cyclic guanosine 3′,5′-monophosphate in mammalian tissues and urine. J. biol. Chem. 244, 4458–4466 (1969).

    CAS  PubMed  Google Scholar 

  • Goldberg, N.D., Haddox, M.K., Hartle, D.K., Hadden, J.W.: The biological role of cyclic 3′,5′-guanosine monophosphate. In: Cellular Mechanisms. Basel: S. Karger 1973 a.

    Google Scholar 

  • Goldberg, N.D., Lust, W.D., O’Dea, R.F., Wei, S., O’Toole, A.G.: A role of cyclic nucleotides in brain metabolism. Advanc. Biochem. Psychopharmacol. 3, 67–87 (1970).

    CAS  Google Scholar 

  • Goldberg, N.D., O’Dea, R.F., Haddox, M.K.: Cyclic GMP. In: Advances in Cyclic Nucleotide Research, vol. 3. New York: Raven Press 1973b.

    Google Scholar 

  • Goldberg, N.D., O’Toole, A.G.: The properties of glycogen synthetase and regulation of glycogen biosynthesis in rat brain. J. biol. Chem. 244, 3053–3061 (1969).

    CAS  PubMed  Google Scholar 

  • Goldstein, M., Anagnoste, B., Shirron, C.: The effect of trivastal, haloperidol, and dibutyryl cyclic AMP on (14C) dopamine synthesis in rat striatum. J. Pharm. Pharmacol. 25, 348–351 (1973).

    CAS  PubMed  Google Scholar 

  • Goodman, D.B.P., Rasmussen, H., Dibella, F., Gothrow, C.E.: Cyclic adenosine 3′:5′-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc. nat. Acad. Sci. (Wash.) 67, 652–659 (1970).

    CAS  Google Scholar 

  • Goodman, F.R., Weiss, G.B.: Dissociation by lanthanum of smooth muscle responses to potassium and acetylcholine. Amer. J. Physiol. 220, 759–766 (1971).

    CAS  PubMed  Google Scholar 

  • Greengard, P., Kebabian, J.W.: Role of cyclic AMP in synaptic transmission in the mammalian peripheral nervous system. Fed. Proc. 33, 1059–1068 (1974).

    CAS  PubMed  Google Scholar 

  • Greengard, P., Kebabian, J.W., McAfee, D.A.: Studies on the role of cyclic AMP in neural function. In: Cellular Mechanisms. Basel: S. Karger 1973.

    Google Scholar 

  • Guidotti, A., Cheney, D.L., Trabucchi, M., Doteuchi, M., Wang, C.: Focussed microwave radiation: a technique to minimize post-mortem changes of cyclic nucleotides, DOPA and choline and to preserve brain morphology. Neuropharmacology 13, 1115–1122 (1974).

    CAS  PubMed  Google Scholar 

  • Guidotti, A., Costa, E.: Involvement of adenosine 3′,5′-monophosphate in the activation of tyrosine hydroxylase elicited by drugs. Science 179, 902–904 (1973).

    CAS  PubMed  Google Scholar 

  • Guidotti, A., Costa, E.: A role for nicotinic receptors in the regulation of the adenylate cyclase of adrenal medulla. J. Pharmacol. exp. Ther. 189, 665–675 (1974).

    CAS  PubMed  Google Scholar 

  • Guidotti, A., Kurosawa, A., Chuang, D.M., Costa, E.: Protein kinase activation as an early event in the trans-synaptic induction of tyrosine-3-mono-oxygenase in adrenal medulla. Proc. nat. Acad. Sci. (Wash.) (in press).

    Google Scholar 

  • Guidotti, A., Zivkovic, B., Pfeiffer, R., Costa, E.: Involvement of 3′,5′-cyclic adenosine monophos phate in the increase of tyrosine hydroxylase activity elicited by cold exposure. Naunyn-Schmiedeberg’s Arch. Pharmacol. 278, 195–206 (1973).

    CAS  Google Scholar 

  • Gunaga, K.P., Menon, K.M.J.: Effect of catecholamines and ovarian hormones on cyclic AMP accumulation in rat hypothalamus. Biochem. biophys. Res. Commun. 54, 440–448 (1973).

    CAS  PubMed  Google Scholar 

  • Hamprecht, B., Schultz, J.: Stimulation by prostaglandin E1 of adenosine 3′,5′-cyclic monophosphate formation in neuroblastoma cells in the presence of phosphodiesterase inhibitors. FEBS Letters 34, 85–89 (1973).

    CAS  PubMed  Google Scholar 

  • Hanna, P.E., O’Dea, R.F., Goldberg, N.D.: Phosphodiesterase inhibition by papaverine and structurally related compounds. Biochem. Pharmacol. 21, 2266–2268 (1972).

    CAS  PubMed  Google Scholar 

  • Hardman, J.G., Sutherland, E.W.: Guanyl cyclase, an enzyme catalyzing the formation of guanosine 3′,5′-monophosphate from guanosine triphosphate. J. biol. Chem. 244, 6363–6370 (1969).

    CAS  PubMed  Google Scholar 

  • Harris, J.E., Morgenroth, V.H., Roth, R.H., Baldessarini, R.J.: Regulation of catecholamine synthesis in the rat brain in vitro by cyclic AMP. Nature (Lond.) 252, 156–158 (1974).

    CAS  Google Scholar 

  • Hax, W.M.A., Van Venrooij, G.E.P.M., Vossenberg, J.B.J.: Cell communication: a cyclic AMP mediated phenomenon. J. Membrane Biol. 19, 253–266 (1974).

    CAS  Google Scholar 

  • Hayaishi, O., Greengard, P., Colowick, S.B.: On the equilibrium of the adenylate cyclase reaction. J. biol. Chem. 246, 5840–5843 (1971).

    CAS  PubMed  Google Scholar 

  • Haylett, D.G., Jenkinson, D.H.: Effects of noradrenaline on the membrane potential and ionic permeability of parenchymal cells in the liver of the guinea-pig. Nature (Lond.) 224, 80–81 (1969).

    CAS  Google Scholar 

  • Heisler, S., Fast, D., Tenenhouse, A.: Role of Ca2+ and cyclic AMP in protein secretion from rat exocrine pancreas. Biochim. biophys. Acta (Amst.) 279, 561–572 (1972).

    CAS  Google Scholar 

  • Herman, Z.S.: Behavioral effects of dibutyryl cyclic 3′,5′ AMP, noradrenaline and cyclic 3′,5′ AMP in rats. Neuropharmacology 12, 705–709 (1973).

    CAS  PubMed  Google Scholar 

  • Hidaka, T., Kuriyama, H.: Effects of catecholamines on the cholinergic neuromuscular transmission in fish red muscle. J. Physiol. (Lond.) 201, 61–71 (1969).

    CAS  Google Scholar 

  • Hill, R.G., Simmonds, M.A.: A method for comparing the potencies of γ-aminobutyric acid antagonists on single cortical neurones using microiontophoretic techniques. Brit. J. Pharmacol. 48, 1–11 (1973).

    CAS  Google Scholar 

  • Ho, I.K., Loh, H.H., Way, E.L.: Cyclic adenosine monophosphate antagonism of morphine analgesia. J. Pharmacol. exp. Ther. 185, 336–346 (1973 a).

    CAS  PubMed  Google Scholar 

  • Ho, I.K., Loh, H.H., Way, E.L.: Effects of cyclic 3′,5′-adenosine monophosphate on morphine tolerance and physical dependence. J. Pharmacol. exp. Ther. 185, 347–357 (1973 b).

    CAS  PubMed  Google Scholar 

  • Hökfelt, T., Ungerstedt, U.: Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurons: electron and fluorescence microscopic study with special reference to intracerebral injection of the nigro striatal dopamine system. Brain Res. 60, 269–298 (1973).

    PubMed  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Bloom, F.E.: Prostaglandins E1 and E2 antagonize norepinephrine effects on cerebellar Purkinje cells: Microelectrophoretic study. Science 166, 1418–1420 (1969).

    CAS  PubMed  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Bloom, F.E.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 25, 523–534 (1971 a).

    CAS  PubMed  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Oliver, A.P., Bloom, F.E.: Cyclic AMP mediation of norepinephrine inhibition in rat cerebellar cortex: A unique class of synaptic responses. Ann. N.Y. Acad. Sci. 185, 531–549 (1971b).

    CAS  PubMed  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Oliver, A.P., Bloom, F.E.: Cyclic adenosine monophosphate mediated adrenergic synapses to cerebellar Purkinje cells. In: Advances in Cyclic Nucleotide Research, vol. 1, 411–423 (1972).

    Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Oliver, A.P., Bloom, F.E.: Activation of the pathway from locus coeruleus to rat cerebellar Purkinje neurons: pharmacological evidence of noradrenergic central inhibition. J. Pharmacol. exp. Ther. 184, 553–569 (1973).

    CAS  PubMed  Google Scholar 

  • Hoffer, B.J., Siggins, G.R., Woodward, D.J., Bloom, F.E.: Spontaneous discharge of Purkinje neurons after destruction of catecholamine-containing afferents by 6-hydroxydopamine. Brain Res. 30, 425–430(1971).

    CAS  PubMed  Google Scholar 

  • Hofmann, F., Sold, G.: A protein kinase activity from rat cerebellum stimulated by guanosine 3′,5′-monophosphate. Biochem. biophys. Res. Commun. 49, 1100–1107(1972).

    CAS  PubMed  Google Scholar 

  • Honda, F., Imamura, H.: Inhibition of cyclic 3′,5′-nucleotide phosphodiesterase by phenothiazine and reserpine derivatives. Biochim. biophys. Acta (Amst.) 161, 267–269 (1968).

    CAS  Google Scholar 

  • Horowitz, J.M., Horwitz, B.A., Smith, R.E.: Effect in vivo of norepinephrine on the membrane resistance of brown fat cells. Experientia (Basel) 27, 1419 (1971).

    CAS  Google Scholar 

  • Horwitz, B.A., Horowitz, J.M., Smith, R.E.: Norepinephrine-induced depolarization of brown fat cells. Proc. nat. Acad. Sci. (Wash.) 64, 113–120 (1969).

    CAS  Google Scholar 

  • Howell, S.L., Whitfield, M.: Localization of adenyl cyclase in islet cells. J. Histochem. Cytochem. 20, 873 (1972).

    CAS  PubMed  Google Scholar 

  • Huang, M., Gruenstein, E., Daly, J.W.: Depolarizing-evoked accumulation of cyclic AMP in brain slices: inhibition by exogenous adenosine deaminase. Biochim. biophys. Acta (Amst.) 329, 147–151 (1973a).

    CAS  Google Scholar 

  • Huang, M., Ho, A.K.S., Daly, J.W.: Accumulation of adenosine cyclic 3′,5′-monophosphate in rat cerebral cortical slices. Stimulatory effects of alpha and beta adrenergic agents after treatment with 6-hydroxydopamine, 2,3,5-trihydroxyphenethylamine and dehydroxytryptamines. Molec. Pharmacol. 9, 711–717 (1973 b).

    CAS  Google Scholar 

  • Huang, M., Shimizu, H., Daly, J.: Regulation of adenosine cyclic 3′,5′-phosphate formation in cerebral cortical slices. Interaction among norepinephrine, histamine, serotonin. Molec. Pharmacol. 7, 155–162 (1971).

    CAS  Google Scholar 

  • Huxley, A.F.: Muscular contraction. J. Physiol. (Lond.) 243, 1–44 (1974).

    CAS  Google Scholar 

  • Huxley, J.S.: Chemical regulation and the hormone concept. Biol. Rev. 10, 427–441 (1935).

    CAS  Google Scholar 

  • Ito, Y., Kuriyama, H., Tashiro, N.: Effects of catecholamines on the neuromuscular junction of the somatic muscle of the earthworm pheretima communissima. J. exp. Biol. 54, 167–186 (1971).

    CAS  PubMed  Google Scholar 

  • Jacobowitz, D.: Catecholamine fluorescence studies of adrenergic neurons and chromaffin cells in sympathetic ganglia. Fed. Proc. 29, 1929–1944 (1970).

    CAS  PubMed  Google Scholar 

  • Janiec, W., Trzeciak, H., Herman, Z.: The influence of adrenaline and optical isomers of INPEA on the adenyl cyclase activity in main hemispheres of rats in vitro. Arch. int. Pharmacodyn 185, 254–258 (1970).

    CAS  PubMed  Google Scholar 

  • Jenkinson, D.H., Stamenovic, B.A., Whitaker, B.D.L.: The effect of noreadrenaline on the end-plate potential in twitch fibres of the frog. J. Physiol. (Lond.) 195, 743–754 (1968).

    CAS  Google Scholar 

  • Johnson, E.M., Maeno, H., Greengard, P.: Phosphorylation of endogenous protein of rat brainby a cyclic adenosine 3′,5′-monophosphate dependent protein kinase. J. biol. Chem. 246, 7731–7739 (1971).

    CAS  PubMed  Google Scholar 

  • Johnson, E.M., Ueda, T., Maeno, H., Greengard, P.: Adenosine 3′,5′-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum. J. biol. Chem. 247, 5650–5652 (1972).

    CAS  PubMed  Google Scholar 

  • Jordan, L.M., Lake, N., Phillis, J.W.: Mechanism of noradrenaline depression of cortical neurones: a species comparison. Europ. J. Pharmacol. 20, 381–384 (1972).

    CAS  Google Scholar 

  • Jouvet, M.: The role of monoamines and acetylcholine containing neurons in the regulation of the sleep-waking cycle. Ergebn. Physiol. 64, 168–307 (1972).

    Google Scholar 

  • Kadlec, O., Masek, K., Seferna, I.: The effect of papaverine on 45Ca2+ uptake in partly depolarized taeni coli of the guinea-pig. J. Pharm. Pharmacol. 25, 914–916 (1973).

    CAS  PubMed  Google Scholar 

  • Kakiuchi, K.S., Marks, B.H.: Adrenergic effects on pineal cell membrane potential. Life Sci. 11, 285–291 (1972).

    Google Scholar 

  • Kakiuchi, S.: Cyclic 3′,5′-nucleotide phosphodiesterase of rat brain and other tissues: regulation of activity by Ca2+ and the modulator protein. In: Cellular Mechanisms. Basel: S. Karger 1973.

    Google Scholar 

  • Kakiuchi, S.: Ca2+ plus Mg2+-dependent phosphodiesterase and its modulator from various rat tissues. In: Advances in Cyclic Nucleotide Research, vol.5. New York: Raven Press (in press).

    Google Scholar 

  • Kakiuchi, S., Rall, T.W.: Studies on adenosine 3′,5′-phosphate in rabbit cerebral cortex. Molec. Pharmacol. 4, 379–388 (1968a).

    CAS  Google Scholar 

  • Kakiuchi, S., Rall, T.W.: The influence of chemical agents on the accumulation of adenosine 3′,5′-phosphate in slices of rabbit cerebellum. Molec. Pharmacol. 4, 367–378 (1968 b).

    CAS  Google Scholar 

  • Kakiuchi, S., Rall, T.W., McIlwain, H.: The effect of electrical stimulation upon the accumulation of adenosine 3′,5′-phosphate in isolated cerebral tissue. J. Neurochem. 16, 485–491 (1969).

    CAS  PubMed  Google Scholar 

  • Kakiuchi, S., Yamazaki, R.: Calcium dependent phosphodiesterase activity and its activating factor (PAF) from brain. Studies on cyclic 3′,5′-nucleotide phosphodiesterase. Biochem. biophys. Res. Commun. 41, 1104–1110 (1970).

    CAS  Google Scholar 

  • Kakiuchi, S., Yamazaki, R., Teshima, Y.: Cyclic 3′,5′-nucleotide phosphodiesterase. IV. Two enzymes with different properties from brain. Biochem. biophys. Res. Commun. 42, 968–974 (1971).

    CAS  Google Scholar 

  • Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K.: Regulation of nucleoside cyclic 3′,5′-monophosphate phosphodiesterase activity from rat brain by a modulator and Ca2+. Proc. nat. Acad. Sci. (Wash.) 70, 3526–3535 (1973).

    CAS  Google Scholar 

  • Kakiuchi, S., Yamazaki, R., Teshima, Y., Uenishi, K., Miyamoto, E.: Multiple cyclic nucleotide phosphodiesterase activities from rat tissues and occurrence of a calcium-plus-magnesium-ion-dependent phosphodiesterase and its protein activator. Biochem. J. 146, 109–120 (1975).

    CAS  PubMed  Google Scholar 

  • Kalix, P., McAfee, D.A., Chorderet, M., Greengard, P.: Pharmacological analysis of synaptically mediated increase in cyclic AMP in rabbit superior cervical ganglion. J. Pharmacol. exp. Ther. 188, 676–687 (1974).

    CAS  PubMed  Google Scholar 

  • Kandel, E.R.: Dale’s principle and the functional specificity of neurons. In: Psychopharmacology — A Ten Year Progress Report. Washington, D.C.: U.S. Govt. Printing Office 1968.

    Google Scholar 

  • Karobath, M., Leitich, H.: Antipsychotic drugs and dopamine-stimulated adenylate cyclase prepared from corpus striatum of rat brain. Proc. nat. Acad. Sci. (Wash.) 71, 2915–2918 (1974).

    CAS  Google Scholar 

  • Katz, A.M., Tada, M., Repke, D.J., Iorio, J.M., Krichberger, M.A.: Adenylate cyclase: Its probable localization in sarcoplasmic reticulum as well as sarcolemma of the canine heart. J. Mol. Cell. Cardiol. 6, 73–78 (1974).

    CAS  PubMed  Google Scholar 

  • Katz, B.: Nerve, Muscle, and Synapse. New York: McGraw-Hill 1966.

    Google Scholar 

  • Katz, S., Tenenhouse, A.: The relationship of adenyl cyclase to the activity of other ATP utilizing enzymes and phosphodiesterase in preparations of rat brain. Mechanism of stimulation of cyclic AMP accumulation by adrenaline, ouabain, and Mg++. Brit. J. Pharmacol. 48, 516–526 (1973).

    CAS  Google Scholar 

  • Katzman, R., Björklund, A., Owman, C., Stenevi, U., West, K.: Evidence for regenerative axon sprouting of central catecholamine neurons in rat mesencephalon following electrolytic lesions. Brain Res. 25, 579–596 (1971).

    CAS  PubMed  Google Scholar 

  • Kauffman, F.E., Harkonen, M.H.A., Johnson, E.E.: Adenyl cyclase and phosphodiesterase activity in cerebral cortex of normal and undernourished neonatal rats. Life Sci. 11, 613–621 (1972).

    CAS  Google Scholar 

  • Kaukel, E., Hilz, H.: Permeation of dibutyryl cAMP into hela cells and its conversion to monobutyryl cAMP. Biochem. biophys. Res. Commun. 46, 1011–1018 (1972).

    CAS  PubMed  Google Scholar 

  • Kebabian, J.W., Greengard, P.: Dopamine-sensitive adenyl cyclase: possible role in synaptic transmission. Science 174, 1346–1349 (1971).

    CAS  PubMed  Google Scholar 

  • Kebabian, J.W., Petzold, G.L., Greengard, P.: Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain and its similarities to the dopamine receptor. Proc. nat. Acad. Sci. (Wash.) 69, 2145–2150 (1972).

    CAS  Google Scholar 

  • Keen, P., McLean, W.G.: Effect of dibutyryl-cyclic AMP and dexamethasone on noradrenaline synthesis in isolated superior cervical ganglia. J. Neurochem. 22, 5–10 (1974).

    CAS  PubMed  Google Scholar 

  • Kimura, H., Thomas, E., Murad, F.: Effects of decapitation, ether and pentobarbital on guanosine 3′-5′ phosphate and adenosine 3′,5′ phosphate levels in rat tissues. Biochim. biophys. Acta (Amst.) 343, 519–528 (1974).

    CAS  Google Scholar 

  • Kirchberger, M.A., Tada, M., Katz, A.M.: Adenosine 3′,5′-monophosphate-dependent protein kinase-catalyzed phosphorylation reaction and its relationship to calcium transport in cardiac sarcoplasmic reticulum. J. biol. Chem. 249, 6166–6173 (1974).

    CAS  PubMed  Google Scholar 

  • Klainer, L.M., Chi, Y-M., Friedberg, S.L., Rall, T.W., Sutherland, E.: Adenyl cyclase. IV. The effects of neurohormones on the formation of adenosine 3′,5′ phosphate by preparations from brain and other tissues. J. biol. Chem. 237, 1239–1243 (1962).

    CAS  PubMed  Google Scholar 

  • Klawans, H.L., Moses, H., Beaulieu, D.M.: The influence of caffeine on d-amphetamine- and pomorphine-induced stereotyped behavior. Life Sci. 14, 1493–1500 (1974).

    CAS  PubMed  Google Scholar 

  • Klein, D.C., Yuwiler, A., Weller, J.L., Plotkin, S.: Postsynaptic adrenergic-cyclic AMP control f the serotonin content of cultured rat pineal glands. J. Neurochem. 21, 1261–1271 (1973).

    CAS  PubMed  Google Scholar 

  • Knull, H.R., Taylor, W.F., Wells, W.W.: Insulin effects on brain energy metabolism and the elated hexokinase distribution. J. biol. Chem. 249, 6930–6935 (1974).

    CAS  PubMed  Google Scholar 

  • Kodama, T., Matsuko, Y., Shimizu, H.: The cyclic AMP system of human brain. Brain Res. 50, 135–146 (1973).

    CAS  PubMed  Google Scholar 

  • Koelle, G.B., Friedenwald, J.S.: A histochemical method for localizing Cholinesterase activity. Proc. Soc. exp. Biol. (N.Y.) 70, 617–622 (1949).

    CAS  Google Scholar 

  • Krishna, G., Ditzion, B.R., Gessa, G.L.: Intense ergotrophic stimulation induced by intracerebral injection of dibutyryl cyclic 3′-5′ AMP. Proc. Int. Union Physiol. Sci., Washington, D.C. 1, 247 (1968).

    Google Scholar 

  • Krishna, G., Moskowitz, J., Dempsey, P., Brodie, B.B.: The effect of norepinephrine and insulin on brown fat cell membrane potentials. Life Sci. 9, 1353–1361 (1970).

    CAS  Google Scholar 

  • Krnjevic, K., Dumain, R., Renaud, L.: The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. (Lond.) 215, 247–268 (1971).

    CAS  Google Scholar 

  • Kroeger, E.A., Marshall, J.M.: Beta-adrenergic effects on rat myometrium: mechanisms of membrane hyperpolarization. Amer. J. Physiol. 225, 1339–1345 (1973).

    CAS  PubMed  Google Scholar 

  • Kuba, K.: Effects of catecholamines on the neuromuscular junction in the rat diaphragm. J. Physiol. (Lond.) 211, 551–570 (1970).

    CAS  Google Scholar 

  • Kuba, K., Koketsu, K.: Ionic mechanism of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Brain Res. 81, 338–342 (1974).

    CAS  PubMed  Google Scholar 

  • Kuba, K., Tomita, T.: Noradrenaline action on nerve terminal in the rat diaphragm. J. Physiol. (Lond.) 217, 19–31 (1971).

    CAS  Google Scholar 

  • Kuffler, S.W.: Transmitter mechanism at the nerve-muscle junction. Arch. Sci. physiol. 3, 585–601 (1949).

    Google Scholar 

  • Kuo, J.F.: Guanosine 3′:5′-monophosphate-dependent protein kinases in mammalian tissues. Proc. nat. Acad. Sci. (Wash.) 71, 4037–4041 (1974).

    CAS  Google Scholar 

  • Kuo, J.F., Greengard, P.: Cyclic nucleotide-dependent protein kinases. IV. Widespread occurrence of adenosine 3′,5′-monophosphate dependent protein kinase in various tissues and phyla of the animal kingdom. Proc. nat. Acad. Sci. (Wash.) 64, 1349–1355 (1969 a).

    CAS  Google Scholar 

  • Kuo, J.F., Greengard, P.: Adenosine 3′,5′-monophosphate dependent protein kinase from brain. Science 165, 63–65 (1969b).

    PubMed  Google Scholar 

  • Kuo, J.F., Greengard, P.: Stimulation of adenosine 3′,5′-monophosphate-dependent protein kinases by some analogs of adenosine 3′,5′-monophosphate. Biochem. biophys. Res. Commun. 40, 1032–1038 (1970a).

    CAS  PubMed  Google Scholar 

  • Kuo, J.F., Greengard, P.: Cyclic nucleotide-dependent protein kinases. VII. Comparison of various histones as substrates for adenosine 3′,5′-monophosphate-dependent and guanosine 3′,5′-monophosphate-dependent protein kinases. Biochim. biophys. Acta (Amst.) 212, 434 440 (1970 b).

    CAS  Google Scholar 

  • Kuo, J.F., Greengard, P.: Stimulation of cyclic GMP dependent protein kinase by a protein fraction which inhibits cyclic AMP-dependent protein kinases. Fed. Proc. 30, 1089 (1973).

    Google Scholar 

  • Kuo, J.F., Lee, T.P., Reyes, P.L., Walton, K.G., Donnelly, T.E., Greengard, P.: Cyclic nucleotide-dependent protein kinases. X. An assay method for the measurement of guanosine 3′,5′-monophosphate in various biological materials and a study of agents regulating its levels on heart and brain. J. biol. Chem. 247, 16–22 (1972).

    CAS  PubMed  Google Scholar 

  • Kuo, J.F., Miyamoto, E., Reyes, P.L.: Activation and dissociation of adenosine 3′,5′-monophosphate-dependent protein kinase by various cyclic nucleotide analogs. Biochem. Pharmacol. 23, 2011–2021 (1974).

    CAS  PubMed  Google Scholar 

  • Kuriyama, K., Isreal, M.A.: Effect of ethanol administration on cyclic 3′,5′-adenosine-monophosphate metabolism in brain. Biochem. Pharmacol. 22, 2919–2922 (1973).

    CAS  PubMed  Google Scholar 

  • Lake, N., Jordan, L.M.: Failure to confirm cyclic AMP as second messenger for norepinephrine in rat cerebellum. Science 183, 663–664 (1974).

    CAS  PubMed  Google Scholar 

  • Lake, N., Jordan, L.M., Phillis, J.W.: Mechanism of noradrenaline actions in cat cerebral cortex. Nature (Lond.) 240, 249–250 (1972).

    CAS  Google Scholar 

  • Lake, N., Jordan, L.M., Phillis, J.W.: Evidence against cyclic adenosine 3′,5′-monophosphate (AMP) mediation of noradrenaline depression of cerebral cortical neurones. Brain Res. 60, 411–421 (1973).

    CAS  PubMed  Google Scholar 

  • Landis, S.C., Bloom, F.E.: Fluorescence and electron microscopic analysis of catecholamine containing fibers in mutant mouse cerebellum. 4th Annu. Meeting Soc. Neurosci. 297, 1974.

    Google Scholar 

  • Langan, T.: Protein kinases and protein kinase substrates. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.

    Google Scholar 

  • Lee, T-P., Kuo, J.F., Greengard, P.: Role of muscarinic cholinergic receptors in regulation of guanosine 3′,5′-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc. nat. Acad. Sci. (Wash.) 69, 3287–3289 (1972).

    CAS  Google Scholar 

  • Lefkowitz, R.J.: Stimulation of catecholamine-sensitive adenylate by 5’-guanylyl imido-diphosphate J. biol. Chem. 249, 6119–6124 (1974).

    CAS  PubMed  Google Scholar 

  • Lefkowitz, R.J., Mukherjee, C., Coverstone, M., Caron, M.G.: Stereospecific (3H) (-) — alprenolol binding sites, β-adrenergic receptors and adenylate cyclase. Biochem. biophys. Res. Commun. 60, 703–709 (1974).

    CAS  Google Scholar 

  • Lentz, T.L.: A role of cyclic AMP in a neurotrophic process. Nature (Lond.) 238, 154–155 (1972).

    CAS  Google Scholar 

  • Levitan, I.B., Barondes, S.H.: Octopamine- and serotonin-stimulated phosphorylation of specific protein in the abdominal ganglion of Aplysia californica. Proc. nat. Acad. Sci (Wash) 72 1145–1148 (1974).

    Google Scholar 

  • Levitan, I.B., Madsen, C.J., Barondes, S.H.: Cyclic AMP and amine effects on phosphorylation of specific protein in abdominal ganglion of aplysia californica: localization and kinetic analysis. J. Neurobiol. 5, 475–588 (1974).

    Google Scholar 

  • Libet, B.: Generation of slow inhibitory and excitatory postsynaptic potentials. Fed. Proc 29 1945–1949 (1970).

    CAS  PubMed  Google Scholar 

  • Libet, B., Kobayashi, H.: Generation of adrenergic and cholinergic potentials in sympathetic ganglion cells. Science 164, 1530–1532 (1969).

    CAS  PubMed  Google Scholar 

  • Lin, Y.M., Liu, Y.P., Cheung, W.Y.: Cyclic 3′:5′-nucleotide phosphodiesterase. Purification, characterization, and active form of the protein activator from bovine brain. J. biol. Chem. 249, 4943–4954 (1974).

    CAS  PubMed  Google Scholar 

  • Lindl, T., Cramer, H.: Formation, accumulation and release of adenosine 3′,5′-monophosphate induced by histamine in the superior cervical ganglion of the rat in vivo. Biochim. biophys.Acta (Amst.) 343, 182–191 (1974).

    CAS  Google Scholar 

  • Lindvall, O., Björklund, A.: The organization of the ascending catecholamine neuron systems in the rat brain. Acta physiol. scand. 412, 1–48 (1974).

    CAS  Google Scholar 

  • Lindvall, O., Björklund, A., Moore, R.Y., Stenevi, U.: Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 81, 325–331 (1974).

    CAS  PubMed  Google Scholar 

  • Ling, G., Gerard, R.W.: Normal membrane potential of frog sartorius fibers. J. cell. comp. Physiol. 34, 383–394 (1949).

    CAS  Google Scholar 

  • Lipkin, D., Cook, W.H., Markham, R.: Adenosine-3′:5′-phosphoric acid: A proof of structure. J. Amer. chem. Soc. 81, 6198–6203 (1959).

    CAS  Google Scholar 

  • Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. ges. Physiol. 189, 239–242 (1921).

    Google Scholar 

  • Londos, C., Solomon, Y., Lin, M.C., Harwood, J.P., Schramm, M., Wolff, J., Rodbell, M.: 5-Guanylyl-imidodiphosphate, a potent activator of adenylate cyclase systems in eukaryotic cells. Proc. nat. Acad. Sci. (Wash.) 71, 3087–3090 (1974).

    CAS  Google Scholar 

  • Lorenzo, R. de, Greengard, P.: Activation by adenosine 3′:5′-monophosphate of a membrane bound phosphoprotein phosphatase from toad bladder. Proc. nat. Acad. Sci. (Wash.) 70, 1831–1835 (1973).

    Google Scholar 

  • Lorenzo, R. de, Walton, K.G., Curran, P.F., Greengard, P.: Regulation of phosphorylation of a specific protein in toad bladder membrane by antidiuretic hormone and cyclic AMP, and its possible relationship to membrane permeability changes. Proc. nat. Acad. Sci. (Wash.) 70, 880–884 (1973).

    Google Scholar 

  • Lowry, O.H., Passonneau, J.V., Hasselberger, F.X., Schultz, D.W.: Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. biol. Chem. 239, 18–30 (1964).

    CAS  PubMed  Google Scholar 

  • Lust, W.D., Passonneau, J.V., Veech, R.L.: Cyclic adenosine monophosphate metabolites and Phosphorylase in neuronal tissue. A comparison of methods of fixation. Science 181, 280–282 (1973).

    CAS  PubMed  Google Scholar 

  • Mackay, A.V.P., Iversen, L.L.: Increased tyrosine hydroxylase activity of sympathetic ganglia cultured in the presence of dibutyryl cyclic AMP. Brain Res. 48, 424–426 (1972).

    CAS  PubMed  Google Scholar 

  • Maeda, T., Tohyama, M., Shimizu, N.: Modification of postnatal development of neocortex in rat brain with experimental deprivation of locus coeruleus. Brain Res. 70, 515–520 (1974).

    CAS  PubMed  Google Scholar 

  • Maeno, H., Greengard, P.: Phosphoprotein phosphatases from rat cerebral cortex. J. biol. Chem. 247, 3269–3277 (1972).

    CAS  PubMed  Google Scholar 

  • Maeno, H., Johnson, E.M., Greengard, P.: Subcellular distribution of adenosine 3′,5′-monophosphate-dependent protein kinase in rat brain. J. biol. Chem. 246, 134–142 (1971).

    CAS  PubMed  Google Scholar 

  • Maeno, H., Ueda, T., Greengard, P.: Adenosine 3′:5′-monophosphate dependent protein phosphatase activity in synaptic membrane fractions. J. Cyclic Nucleotide Res. 1, 37–38 (1975).

    CAS  Google Scholar 

  • Magaribuchi, M., Kuriyama, H.: Effects of noradrenaline and isoprenaline on the electrical and mechanical activities of guinea pig depolarized taenia coli. Jap. J. Physiol. 22, 253–270 (1972).

    CAS  Google Scholar 

  • Magun, B.: Two actions of cyclic AMP on melanosome movement in frog skin. J. Cell Biol. 57, 845–858 (1973).

    CAS  PubMed  Google Scholar 

  • Mao, C.C., Guidotti, A., Costa, E.: Inhibition by diazepam of the tremor and the increase of cerebellar cGMP content elicited by harmaline. Brain Res. 83, 526–529 (1974a).

    Google Scholar 

  • Mao, C.C., Guidotti, A., Costa, E.: Interactions between γ-amino-bytyric acid and guanosine cyclic 3′-5′ monophosphate in rat cerebellum. Molec. Pharmacol. 10, 736–745 (1974b).

    CAS  Google Scholar 

  • Mao, C.C., Guidotti, A., Costa, E.: The regulation of cyclic guanosine monophosphate in rat cerebellum: possible involvement of putative amino acid neurotransmitters. Brain Res. 79, 510–514 (1974c).

    CAS  PubMed  Google Scholar 

  • Matthews, E.K., Saffran, M.: Ionic dependence of adrenal steroidogenesis and ACTH-induced changes in the membrane potential of adreno-cortical cells. J. Physiol. (Lond.) 234, 43–64 (1973).

    CAS  Google Scholar 

  • Mayer, S.E.: Effect of catecholamines on cardiac metabolism. Circulat. Res. Suppl. III 34–35, 129–137 (1974).

    Google Scholar 

  • McAfee, D.A., Greengard, P.: Adenosine 3′:5′-monophosphate: electrophysiological evidence for a role in synaptic transmission. Science 178, 310–312 (1972).

    CAS  PubMed  Google Scholar 

  • McAfee, D.A., Schorderet, M., Greengard, P.: Adenosine 3′:5′-monophosphate in nervous tissue: increase associated with synaptic transmission. Science 171, 1156–1158 (1971).

    CAS  PubMed  Google Scholar 

  • McCune, R.W., Gill, T.H., von Hungen, K., Roberts, S.: Catecholamine sensitive adenyl cyclase in cell-free preparations from rat cerebral cortex. Life Sci. 10, 443–450 (1971).

    CAS  Google Scholar 

  • McManus, J.P., Whitfield, J.F.: Cyclic AMP, prostaglandins and the control of cell proliferation. Prostaglandins 6, 475–487 (1974).

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H., Winter, K.: Effect of DB-c-AMP on mechanical characteristics of ventricular and atrial preparations of several mammalian species. Naunyn-Schmiedeberg’s Arch. Pharmacol. 282, 143–153 (1974).

    CAS  Google Scholar 

  • Meyer, R.B. Jr., Miller, J.P.: Analogs of cyclic AMP and cyclic GMP: general methods of synthesis and the relationship of structure to enzymic activity. Life Sci. 14, 1019–1040 (1974).

    CAS  PubMed  Google Scholar 

  • Miki, N., Keirns, J.J., Markus, F.R., Freeman, J., Bitensky, M.W.: Regulation of cyclic nucleotide concentrations in photoreceptors: An ATP-dependent stimulation of cyclic nucleotide phosphodiesterase by light. Proc. nat. Acad. Sci. (Wash.) 70, 3820–3824 (1973).

    CAS  Google Scholar 

  • Miller, C.A., Levine, E.M.: Neuroblastoma: synchronization of neurite growth in cultures grown in collagen. Science 177, 799–801 (1972).

    CAS  PubMed  Google Scholar 

  • Miller, J.P., Boswell, K.H., Muneyana, K., Simon, L.N., Robins, R.K., Shuman, D.A.: Synthesis and biochemical studies of various 8-substituted derivatives of guanosine 3′:5′-cyclic phosphate, inosine 3′:5′-cyclic phosphate and xanthosine 3′:5′-cyclic phosphate. Biochemistry (Wash.) 12, 5310–5319 (1973).

    CAS  Google Scholar 

  • Miller, R.J., Horn, A.S., Iversen, L.L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3,5′-monophosphate production in rat neostriatum and limbic forebrain. Molec. Pharmacol. 10, 759–766 (1974).

    CAS  Google Scholar 

  • Miller, W.H.: Cyclic nucleotides and photoreception. Exp. Eye Res. 16, 357–363 (1973).

    CAS  PubMed  Google Scholar 

  • Minor, A.V., Sakina, N.L.: Role of cyclic adenosine 3′-5′ monophosphate in olfactory reception. Neurofizilogia 2, 415–422 (1973).

    Google Scholar 

  • Mishra, R.K., Gardner, E.L., Katzman, R., Makman, M.H.: Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity. Proc. nat. Acad. Sci. (Wash.) 71, 3883–3887 (1974).

    CAS  Google Scholar 

  • Mitznegg, P., Schubert, E., Heim, F.: The influence of low and high doses of theophylline on spontaneous motility and cyclic 3′,5′ AMP content in isolated rat uterus. Life Sci. 14, 711–717 (1974).

    CAS  PubMed  Google Scholar 

  • Miyamoto, E., Kakiuchi, S.: In Vitro and In Vivo phosphorylation of myelin basic protein by exogenous and endogenous adenosine 3′5′-monophosphate-dependent protein kinases in brain. J. biol. Chem. 249, 2569–2777 (1974).

    Google Scholar 

  • Miyamoto, E., Kuo, J.F., Greengard, P.: Adenosine 3′5′-monophosphate-dependent protein kinase from brain. Science 165, 63–65 (1969a).

    CAS  PubMed  Google Scholar 

  • Miyamoto, E., Kuo, J.F., Greengard, P.: Cyclicnucleotide-dependent protein kinases. I. Purification and properties of adenosine 3′,5′-monophosphate-dependent protein kinase from bovine brain. J. biol. Chem. 244, 6395–6402 (1969b).

    CAS  PubMed  Google Scholar 

  • Miyamoto, E., Petzold, G.L., Harris, J.S., Greengard, P.: Dissociation and concomitant activation of adenosine 3′,5′-monophosphate-dependent protein kinase by histone. Biochem. biophys. Res. Commun. 44, 305–312 (1971).

    CAS  Google Scholar 

  • Molinoff, P.B., Axelrod, J.: Biochemistry of catecholamines. Ann. Rev. Biochem. 40, 465–500 (1971).

    CAS  PubMed  Google Scholar 

  • Monn, E., Christiansen, R.O.: Adenosine 3′,5′-monophosphate phosphodiesterase: multiple molecular forms. Science 173, 540–541 (1971).

    CAS  PubMed  Google Scholar 

  • Moore, R.Y., Björklund, A., Stenevi, U.: Plastic changes in the adrenergic innervation of the rat septal area in response to denervation. Brain Res. 33, 13–35 (1971).

    CAS  PubMed  Google Scholar 

  • Morgenroth, V.H. III., Boadle-Biber, M., Roth, R.H.: Tyrosine hydrolase: Activation by nerve stimulation. Proc. nat. Acad. Sci. (Wash.) 71, 4283–4287 (1974).

    CAS  Google Scholar 

  • Moses, H.L., Rosenthal, A.S.: Pitfalls in the use of lead ion for histochemical localization of nucleoside phosphatases. J. Histochem. Cytochem. 16, 530–539 (1968).

    CAS  PubMed  Google Scholar 

  • Mueller, R.A., Otten, U., Thoenen, H.: The role of adenosine cyclic 3′,5′-monophosphate in reserpine-initiated adrenal medullary tyrosine hydroxylase induction. Molec. Pharmacol. 10, 855–860 (1974).

    CAS  Google Scholar 

  • Mueller, R.A., Thoenen, H., Axelrod, J.: Increase in tyrosine hydroxylase activity after reserpine administration. J. Pharmacol. exp. Ther. 169, 74–79 (1969).

    CAS  PubMed  Google Scholar 

  • Mulleroe, B., Schwabe, B.: Role of cyclic AMP for function of peripheral and central nervous system. Fortsch. Neurol. Psychiat. 41, 509–526 (1973).

    Google Scholar 

  • Murad, F., Manganiello, V., Vaughan, M.: A simple sensitive protein binding assay for guanosine 3′-5′ monophosphate. Proc. nat. Acad. Sci. (Wash.) 68, 736–739 (1971).

    CAS  Google Scholar 

  • Murphy, D.L., Donnelly, C., Moskowitz, J.: Inhibition by lithium of prostaglandin E1 and norepinephrine effects on cyclic adenosine monophosphate production in human platelets. Clin. Pharmacol. Ther. 14, 810–814 (1973).

    CAS  PubMed  Google Scholar 

  • Nahorski, S.R., Rogers, K.J., Pinns, J.: Cerebral phosphodiesterase and dopamine receptor. J. Pharm. Pharmacol. 25, 912–913 (1973).

    CAS  PubMed  Google Scholar 

  • Naito, K., Kuriyama, K.: Effect of morphine administration on adenyl cyclase and 3′,5′-cyclic nucleotide phosphodiesterase activities in the brain. Jap. J. Pharmacol. 23, 274–276 (1973).

    CAS  PubMed  Google Scholar 

  • Nakazawa, K., Sano, M.: Studies on guanylate cyclase. A new assay method for guanylate cyclase and properties of the cyclase from rat brain. J. biol. Chem. 249, 4207–4211 (1974).

    CAS  PubMed  Google Scholar 

  • Nathanson, J.A., Greengard, P.: Octopamine-sensitive adenylate cyclase: evidence for a biological role of octopamine in nervous tissue. Science 180, 308–310 (1973).

    CAS  PubMed  Google Scholar 

  • Nathanson, J.A., Greengard, P.: Serotonin-sensitive adenylate cyclase in neural tissue and its similarity to the serotonin receptor: a possible site of lysergic acid diethylamide. Proc. nat. Acad. Sci. (Wash.) 71, 797–801 (1974).

    CAS  Google Scholar 

  • Neelon, F.A., Birch, B.M.: Cyclic adenosine 3′:5′-monophosphate-dependent protein kinase. J. biol. Chem. 248, 8361–8365 (1973).

    CAS  Google Scholar 

  • Nelson, C.N., Hoffer, B.J., Chu, N-S., Bloom, F.E.: Cytochemical and pharmacological studies on polysensory neurons in the primate frontal cortex. Brain Res. 62, 115–133 (1973).

    CAS  PubMed  Google Scholar 

  • Norberg, K.A., Ritzen, M., Ungerstedt, U.: Histochemical studies on a special catecholamine- containing cell type in sympathetic ganglia. Acta physiol. scand. 67, 260–270 (1966).

    CAS  PubMed  Google Scholar 

  • Obata, K., Takeda, K., Shinozaki, H.: Electrophoretic release of γ-aminobutyric acid and glutamic acid from micropipettes. Neuropharmacol. 9, 191–194 (1970).

    CAS  Google Scholar 

  • Obata, K., Yoshida, M.: Caudate-evoked inhibition and actions of GABA and other substances on cat pallidal neurons. Brain Res. 64, 455–459 (1973).

    CAS  PubMed  Google Scholar 

  • Oliver, A.P., Segal, M.: Transmembrane changes in hippocampal neurons: hyperpolarizing actions of norepinephrine, cyclic AMP, and locus coeruleus. Proc. Soc. Neurosci. 361 (1974).

    Google Scholar 

  • Olson, L., Fuxe, K.: On the projections from the locus coeruleus noradrenaline neurons. Brain Res. 28, 165–171 (1971).

    CAS  PubMed  Google Scholar 

  • Olson, L., Fuxe, K.: Further mapping out of central noradrenaline nervous systems: Projections of the subcoeruleus area. Brain Res. 43, 289–295 (1972).

    CAS  PubMed  Google Scholar 

  • Otten, U., Mueller, R.A., Oesch, F., Thoenen, H.: Location of an isoproterenol-responsive cyclic AMP pool in adrenergic nerve cell bodies and its relationship to tyrosine 3-monooxygenase induction. Proc. nat. Acad. Sci. (Wash.) 71, 2217–2221 (1974).

    CAS  Google Scholar 

  • Otten, U., Oesch, F., Thoenen, H.: Dissociation between changes in cyclic AMP and subsequent induction of tyrosine hydroxylase in rat superior cervical ganglion and adrenal medulla. Naunyn-Schmiedeberg’s Arch. Pharmacol. 280, 129–140 (1973).

    CAS  Google Scholar 

  • Palay, S.L., Chan-Palay, V.: Cerebellar Cortex. Cytology and Organization. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Palmer, G.C.: Increased cyclic AMP response to norepinephrine in the rat brain following 6-hydroxy-dopamine. Neuropharmacol. 11, 145–149 (1972).

    CAS  Google Scholar 

  • Almer, G.C.: Adenyl cyclase in neuronal and glial-enriched fractions from rat and rabbit brain. Res. Commun. Chem. Path. Pharmacol. 5, 603–613 (1973a).

    Google Scholar 

  • Palmer, G.C.: Influence of amphetamines, protriptyline and pargyline on the time course of the norepinephrine-induced accumulation of cyclic AMP in rat brain. Life Sci. 12, 345–355 (1973b).

    CAS  Google Scholar 

  • Palmer, G.C., Burks, T.F.: Central and peripheral adrenergic blocking actions of LSD and BOL. Europ. J. Pharmacol. 16, 113–116 (1971).

    CAS  Google Scholar 

  • Palmer, G.C., Robison, G.A., Manian, A.A., Sulser, F.: Modification by psychotropic drugs of the cyclic AMP response to norepinephrine in the rat brain in vitro. Psychopharmacologia (Berl.) 23, 201–211 (1972a).

    CAS  Google Scholar 

  • Palmer, G.C., Schmidt, M.J., Robison, G.A.: Development and characteristics of the histamine-induced accumulation of cyclic AMP in the rabbit cerebral cortex. J. Neurochem. 19, 2251–2256 (1972b).

    CAS  PubMed  Google Scholar 

  • Palmer, G.C., Sulser, F., Robison, G.A.: Effects of neurohumoral and adrenergic agents on cyclic AMP levels in various areas of the rat brain in vitro. Neuropharmacol. 12, 327–337 (1973).

    CAS  Google Scholar 

  • Pannbacker, R.G.: Control of guanylate cyclase activity in the rod outer segment. Science 182, 1138–1139 (1973).

    CAS  PubMed  Google Scholar 

  • Pannbacker, R.G., Fleischman, D.E., Reed, D.W.: Cyclic nucleotide phosphodiesterase: high activity in a mammalian photoreceptor. Science 175, 757–758 (1972).

    CAS  PubMed  Google Scholar 

  • Papahadjopoulos, D., Poste, G., Mayhew, E.: Cellular uptake of cyclic AMP captured within phospholipid vesicles and effect on cell growth behavior. Biochim. biophys. Acta (Amst.) 363, 404–418 (1974).

    CAS  Google Scholar 

  • Paton, W.D.M.: Central and synaptic transmission in the nervous system (pharmacological aspects). Ann. Rev. Pharmacol. 20, 431–462 (1958).

    CAS  Google Scholar 

  • Paul, M.I., Cramer, H., Bunney, W.E. Jr.: Urinary adenosine 3′5′-monophosphate in the switch process from depression to mania. Science 171, 300–303 (1971a).

    CAS  PubMed  Google Scholar 

  • Paul, M.I., Cramer, H., Goodwin, F.K.: Urinary cyclic AMP excretion in depression and mania. Arch. gen. Psychiat. 24, 327–333 (1971b).

    CAS  PubMed  Google Scholar 

  • Perkins, J.P.: Adenyl cyclase. In: Advances in Cyclic Nucleotide Research, vol. 3. New York: Raven Press 1973.

    Google Scholar 

  • Perkins, J.P., Moore, M.M.: Adenyl cyclase of rat cerebral cortex. J. biol. Chem. 246, 62–68 (1971).

    CAS  PubMed  Google Scholar 

  • Perkins, J.P., Moore, M.M.: Regulation of the adenosine cyclic 3′,5′-monophosphate content of rat cerebral cortex: ontogenetic development of the responsiveness to catecholamines and adenosine. Molec. Pharmacol. 9, 774–782 (1973 a).

    CAS  Google Scholar 

  • Perkins, J.P., Moore, M.M.: Characterization of the adrenergic receptors mediating a rise in cyclic 3′,5′-adenosine monophosphate in rat cerebral cortex. J. Pharmacol. exp. Ther. 185, 371–378 (1973b).

    CAS  PubMed  Google Scholar 

  • Petersen, O.H.: The effect of glucagon on the liver cell membrane potential. J. Physiol. (Lond.) 239, 647–656 (1974).

    CAS  Google Scholar 

  • Phillis, J.W.: Evidence for cholinergic transmission in the cerebral cortex. Advan. Behav. Biol. 10, 57–80 (1974a).

    CAS  Google Scholar 

  • Phillis, J.W.: The role of calcium in the central effects of biogenic amines. Life Sci. 14, 1189–1201 (1974b).

    CAS  PubMed  Google Scholar 

  • Phillis, J.W., Kostopoulos, G.K., Limacher, J.J.: A potent depressant action of adenine derivatives on cerebral cortical neurons. Europ. J. Pharmacol. 30, 125–129 (1975).

    CAS  Google Scholar 

  • Phillis, J.W., Lake, N., Yarborough, G.: Calcium mediation of the inhibitory effects of biogenic amines on cerebral cortical neurones. Brain Res. 53, 465–469 (1973).

    CAS  PubMed  Google Scholar 

  • Pickel, V.M., Segal, M., Bloom, F.E.: A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. comp. Neurol. 155, 15–42 (1974a).

    CAS  PubMed  Google Scholar 

  • Pickel, V.M., Segal, M., Bloom, F.E.: Axonal proliferation following lesions of cerebellar peduncles. A combined fluorescence microscopic and radioautographic study. J. comp. Neurol. 155, 43–60 (1974b).

    CAS  PubMed  Google Scholar 

  • Posternak, T., Sutherland, E.W., Henion, W.F.: Derivatives of cyclic 3′5′-adenosine monophosphate. Biochim. biophys. Acta (Amst.) 65, 558–560 (1962).

    CAS  Google Scholar 

  • Prasad, K.N., Gilmer, K., Kumar, S.: Morphologically “differentiated” mouse neuroblastoma cells induced by noncyclic AMP agents: levels of cyclic AMP, nucleic acid and protein. Proc. Soc. exp. Biol. (N.Y.) 143, 1168–1171 (1973a).

    CAS  Google Scholar 

  • Prasad, K.N., Hsie, A.W.: Morphologic differentiation of mouse neuroblastoma cells induced in vitro by dibutyryl adenosine 3′,5′-cyclic monophosphate. Nature (Lond.) 233, 141–142 (1971).

    CAS  Google Scholar 

  • Prasad, K.N., Mandal, B., Waymire, J.C., Lees, G.J., Vernadakis, A., Weiner, N.: Basal level of neurotransmitter synthesizing enzymes and effect of cyclic AMP agents on the morphological differentiation of isolated neuroblastoma clones. Nature (Lond.) 241, 117–119 (1973b).

    CAS  Google Scholar 

  • Purpura, D.P., Shofer, R.J.: Excitatory action of dibutyryl cyclic adenosine monophosphate on immature cerebral cortex. Brain Res. 38, 179–181 (1972).

    CAS  PubMed  Google Scholar 

  • Rall, T.W.: Role of adenosine 3′,5′-monophosphate (cyclic AMP) in actions of catecholamines. Pharmacol. Rev. 24, 399–409 (1972).

    CAS  PubMed  Google Scholar 

  • Rall, T.W., Gilman, A.G.: The role of cyclic AMP in the nervous system. Neurosci. Res. Program Bull. 8, (3) 221–317 (1970).

    Google Scholar 

  • Rall, T.W., Sattin, A.: Factors influencing the accumulation of cyclic AMP in brain tissue. Advanc. Biochem. Psychopharmacol. 3, 113–133 (1970).

    CAS  Google Scholar 

  • Rall, T.W., Sutherland, E.W., Berthet, J.: The relationship of epinephrine and glucagon to liver Phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of Phosphorylase in liver homogenates. J. biol. Chem. 224, 463–475 (1957).

    CAS  PubMed  Google Scholar 

  • Rall, T.W., Sutherland, E.: Formation of a cyclic adenine ribonucleotide by tissue particles. J. biol. Chem. 232, 1065–1076 (1958).

    CAS  PubMed  Google Scholar 

  • Rall, T.W., Sutherland, E.W.: The regulatory role of adenosine 3′,5′-phosphate. Cold Spr. Harb. Symp. quant. Biol. 26, 347–354 (1961).

    CAS  Google Scholar 

  • Rall, T.W., Sutherland, E.W.: Adenyl cyclase. II. The enzymatically catalyzed formation of adenosine 3′-5′ phosphate and inorganic pyrophosphate from adenosine triphosphate. J. biol. Chem. 237, 1228–1232(1962).

    CAS  PubMed  Google Scholar 

  • Rasmussen, H.: Cell communication, calcium ion, and cyclic adenosine monophosphate. Science 170, 404–412 (1970).

    CAS  PubMed  Google Scholar 

  • Reik, L., Petzold, G.L., Higgins, J.A., Greengard, P., Barrnett, R.J.: Hormone-sensitive adenyl cyclase: cytochemical localization in rat liver. Science 168, 382–384 (1970).

    CAS  PubMed  Google Scholar 

  • Richelson, E.: Stimulation of tyrosine hydroxylase activity in an adrenergic clone of mouse neuroblastoma by dibutyryl cyclic AMP. Nature (Lond.) 242, 175–177 (1973).

    CAS  Google Scholar 

  • Robertis, E. de, Rodriguez de Lores Arnaiz, G., Alberici, M., Butcher, R.W., Sutherland, E.W.: Subcellular distribution of adenyl cyclase and cyclic phosphodiesterase in rat brain cortex. J. biol. Chem. 242, 3487–3493 (1967).

    Google Scholar 

  • Robison, G.A., Butcher, R.W., Sutherland, E.W.: Cyclic AMP. New York: Academic Press 1971.

    Google Scholar 

  • Rodbell, M.: The role of nucleotides in the activity and response of adenylate cyclase to hormones. In: Advance in Cyclic Nucleotide Research, vol. 5. New York: Raven Press (in press).

    Google Scholar 

  • Rodbell, M., Birnbaumer, L., Pohl, S.L.: Hormones, receptors and adenyl cyclase activity in mammalian cells. In: The Role of Adenyl Cyclase and Cyclic 3′,5′-AMP in Biological Systems, Fogarty International Center Proceedings. Washington, D.C.: U.S. Government Printing Office 1971.

    Google Scholar 

  • Roisen, F.J., Murphy, R.A.: Neurite development in vitro. II. The role of microfilaments and microtubules in dibutyryl adenosine 3′,5′-cyclic monophosphate and nerve-growth factor stimulated maturation. J. Neurobiol. 4, 397–417 (1973).

    CAS  PubMed  Google Scholar 

  • Roisen, F.J., Murphy, R.A., Braden, W.G.: Dibutyryl cyclic adenosine monophate stimulation of colcemid-inhibited axonal elongation. Science 177, 809–811 (1972a).

    CAS  PubMed  Google Scholar 

  • Roisen, F.J., Murphy, R.A., Braden, W.G.: Neurite development in vitro. I. The effects of adenosine 3′,5′-cyclic monophosphate (cyclic AMP). J. Neurobiol. 4, 347–368 (1972b).

    Google Scholar 

  • Roisen, F.J., Murphy, R.A., Pichichero, M.E., Braden, W.G.: Cyclic adenosine monophosphate stimulation of axonal elongation. Science 175, 73–74 (1972c).

    CAS  PubMed  Google Scholar 

  • Rozear, M., DeGroof, R., Somjen, G.: Effects of microiontophoretic administration of divalent metal ions on neurons of the central nervous system of cats. J. Pharmacol. exp. Ther. 176, 109–118 (1971).

    CAS  PubMed  Google Scholar 

  • Rubin, R.P., Jaanus, S.D., Carchman, R.A.: Role of calcium and adenosine cyclic 3′-5′ phosphate in action of adreno corticotropin. Nature (Lond.) 240, 150–152 (1972).

    CAS  Google Scholar 

  • Rudland, P.S., Gospodarowicz, D., Siefert, W.E.: Cyclic GMP and growth control in cultured fibroblasts: activation of guanyl cyclase and intracellular cGMP by a purified growth factor. Nature (Lond.) 250, 741–742 (1974).

    CAS  Google Scholar 

  • Rudolph, S.A., Johnson, E.M., Greengard, P.: The entholpy of hydrolysis of various 3′,5′- and 2′,2′-cyclic nucleotides. J. biol. Chem. 246, 1271–1273 (1971).

    CAS  PubMed  Google Scholar 

  • Russell, J.R., Thompson, W.J., Schneider, F.W., Appleman, M.M.: 3′,5′-Cyclic adenosine monophosphate phosphodiesterase: negative cooperativity. Proc. nat. Acad. Sci. (Wash.) 69, 1791–1795 (1972).

    CAS  Google Scholar 

  • Russell, T.R., Pastan, LH.: Cyclic adenosine 3′:5′-monophosphate and cyclic guanosine 3′:5′-monophosphate phosphodiesterase activities are under separate genetic control. J. biol. Chem. 249, 7764–7769 (1974).

    CAS  PubMed  Google Scholar 

  • Sakai, K., Marks, B.: Adrenergic effects on pineal cell membrane potential. Life Sci. 11, 285–291 (1972).

    CAS  Google Scholar 

  • Salmoiraghi, G.C., Bloom, F.E.: The pharmacology of individual neurons. Science 144, 493–497 (1964).

    CAS  PubMed  Google Scholar 

  • Sasa, M., Munekiyo, K., Ikeda, H., Takaori, S.: Noradrenaline-mediated inhibition by locus coeruleus of spinal trigeminal neurons. Brain Res. 80, 443–460 (1974).

    CAS  PubMed  Google Scholar 

  • Sattin, A., Rall, T.W.: The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices. Molec. Pharmacol. 6, 13–23 (1970).

    CAS  Google Scholar 

  • Sattin, A., Rall, T.W., Zanella, J.: Regulation of cyclic adenosine 3′,5′-monophosphate levels in guinea pig cerebral cortex by interaction of alpha adrenergic and adenosine receptor activity. J. Pharmacol. exp. Ther. 192, 22–32 (1975).

    CAS  PubMed  Google Scholar 

  • Sayers, G., Beall, R.J., Seelig, S.: Isolated adrenal cells: adreno-corticotropic hormone, calcium, steroidogenesis and cyclic adenosine monophosphate. Science 175, 1131–1133 (1972).

    CAS  PubMed  Google Scholar 

  • Schimmer, B.P.: Effects of catecholamines and monovalent cations on adenylate cyclase activity in cultured glial tumor cells. Biochim. biophys. Acta (Amst.) 252, 567–573 (1971).

    CAS  Google Scholar 

  • Schimmer, B.P.: Influence of Li+ on epinephrine-stimulated adenylate cyclase activity in cultured glial tumor cells. Biochim. biophys. Acta (Amst.) 326, 186–192 (1973).

    Google Scholar 

  • Schmidt, M.J., Hopkins, J.T., Schmidt, D.E., Robison, G.A.: Cyclic AMP in brain areas: effects of amphetamine and norepinephrine assessed through the use of microwave radiation as a means of tissue fixation. Brain Res. 42, 465–477 (1972).

    CAS  PubMed  Google Scholar 

  • Schmidt, M.J., Palmer, E.C., Dettborn, W.-D., Robison, G.A.: Cyclic AMP and adenyl cyclase in the developing rat brain. Develop. Psychobiol. 3, 53–67 (1970).

    CAS  Google Scholar 

  • Schmidt, M.J., Robison, G.A.: The effect of norepinephrine on cyclic AMP levels in discrete regions of the developing rabbit brain. Life Sci. 10, 459–464 (1971).

    CAS  Google Scholar 

  • Schmidt, M.J., Schmidt, D.E., Robison, G.A.: Cyclic adenosine monophosphate in brain areas: microwave irradiation as a means of tissue fixation. Science 173, 1142–1143 (1971).

    CAS  PubMed  Google Scholar 

  • Schmidt, M.J., Sokoloff, L.: Activity of cyclic AMP-dependent microsomal protein kinase and phosphorylation of ribosomal protein in rat brain during postnatal development. J. Neurochem. 21, 1193–1205 (1973).

    CAS  PubMed  Google Scholar 

  • Schroeder, J.: Analogs of α-tocopherol as inhibitors of cyclic AMP and cyclic GMP phosphodiesterases and effects of a-tocopherol deficiency on cyclic AMP-controlled metabolism. Biochim. biophys. Acta (Amst.) 343, 173–181 (1974).

    CAS  Google Scholar 

  • Schultz, G., Böhme, E., Munske, K.: Guanyl cyclase: Determination of enzyme activity. Life Sci. 8, 1323–1332 (1969).

    CAS  PubMed  Google Scholar 

  • Schultz, G., Hardman, J.G., Schultz, K., Baird, C.E., Sutherland, E.W.: The importance of calciums ions for the regulation of guanosine 3′,5′-cyclic monophosphate levels. Proc. nat. Acad. Sci. (Wash.) 70, 3889–3893 (1973).

    CAS  Google Scholar 

  • Schultz, J.: Inhibition of phosphodiesterase activity in brain cortical slices from guinea pig and rat. Pharmacol. Res. Commun. 6, 335–341 (1974).

    CAS  PubMed  Google Scholar 

  • Schultz, J., Daly, J.W.: Cyclic adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices. II. The role of phosphodiesterase activity in the regulation of levels of cyclic adenosine 3′,5′-monophosphate. J. biol. Chem. 248, 853–859 (1973a).

    CAS  PubMed  Google Scholar 

  • Schultz, J., Daly, J.W.: Cyclic adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices. III. Formation, degradation, and reformation of cyclic adenosine 3′,5′-monophosphate during sequential stimulations by biogenic amines and adenosine. J. biol. Chem. 248, 860–866 (1973b).

    CAS  PubMed  Google Scholar 

  • Schultz, J., Daly, J.W.: Adenosine 3′,5′-monophosphate in guinea pig cerebral cortical slices: effects of α- and β-adrenergic agents, histamine, serotonin, and adenosine. J. Neurochem. 21, 573–579 (1973c).

    CAS  PubMed  Google Scholar 

  • Schultz, J., Daly, J.W.: Accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices from rat and mouse stimulatory effect of α- and β-adrenergic agents and adenosine. J. Neurochem. 21, 1319–1326 (1973d).

    CAS  PubMed  Google Scholar 

  • Schultz, J., Hamprecht, B., Daly, J.W.: Accumulation of adenosine 3′,5′-cyclic monophosphate in clonal glial cells: labeling of intracellular adenine nucleotides with radioactive adenine. Proc. nat. Acad. Sci. (Wash.) 69, 1266–1270 (1972).

    CAS  Google Scholar 

  • Schwartz, J.P., Morris, N.R., Breckenridge, B.M.: Adenosine 3′,5′-monophosphate in glial tumor cells. J. biol. Chem. 248, 2699–2704 (1973).

    CAS  PubMed  Google Scholar 

  • Seeds, N.W., Gilman, A.G.: Norepinephrine stimulated increase of cyclic AMP levels in developing mouse brain cell cultures. Science 174, 292 (1971).

    CAS  PubMed  Google Scholar 

  • Seeman, P., Lee, T.: Tranquilizer-blockade of dopamine release from stimulated striatal slices. 4th Annu. Meeting Soc. for Neurosci., St. Louis, 620, 1974.

    Google Scholar 

  • Segal, M., Bloom, F.E.: The action of norepinephrine in the rat hippocampus. I. Iontophoretic studies. Brain Res. 72, 79–97 (1974a).

    CAS  PubMed  Google Scholar 

  • Segal, M., Bloom, F.E.: The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res. 72, 99–114 (1974b).

    CAS  PubMed  Google Scholar 

  • Shashoua, V.E.: Dibutyryl adenosine cyclic 3′,5′-monophosphate effects on goldfish behavior and brain RNA metabolism. Proc. nat. Acad. Sci. (Wash.) 68, 2835–2838 (1971).

    CAS  Google Scholar 

  • Shein, H.M., Wurtman, R.J.: Cyclic adenosine monophosphate: stimulation of melatonin and serotonin synthesis in cultured rat pineals. Science 166, 519–520 (1969).

    CAS  PubMed  Google Scholar 

  • Sheppard, H., Burghardt, C.R.: The dopamine-sensitive adenylate cyclase of rat caudate nucleus. I. Comparison with the isoproterenol-sensitive adenylate cyclase (beta receptor system) of rat erythrocytes in responses to dopamine derivatives. Molec. Pharmacol. 10, 721–726 (1974).

    CAS  Google Scholar 

  • Sheppard, J.R., Hudson, T.H., Larson, J.R.: Adenosine 3′,5′-monophosphate analogus promote a circular morphology of cultured schwannoma cells. Science 187, 179–181 (1975).

    CAS  PubMed  Google Scholar 

  • Sheppard, J.R., Prasad, K.N.: Cyclic AMP levels and the morphological differentiation of mouse neuroblastoma cells. Life Sci. 12, 431–439 (1973).

    CAS  Google Scholar 

  • Sherrington, C.S.: Remarks on some aspects of reflex inhibition. Proc. roy. Soc. B 97, 519–544 (1925).

    Google Scholar 

  • Shimizu, H., Daly, J.: Formation of cyclic adenosine 3′,5′ monophosphate from adenosine in brain slices. Biochim. biophys. Acta (Amst.) 222, 465–473 (1970).

    CAS  Google Scholar 

  • Shimizu, H., Daly, J.W.: Effect of depolarizing agents on accumulation of cyclic adenosine 3′,5′-monophosphate in cerebral cortical slices. Europ. J. Pharmacol. 17, 240–252 (1972).

    CAS  Google Scholar 

  • Shimizu, H., Creveling, C.R., Daly, J.: Stimulated formation of adenosine 3′,5′-cyclic phosphate in cerebral cortex: synergism between electrical activity and biogenic amines. Proc. nat. Acad. Sci. (Wash.) 65, 1033–1040 (1970a).

    CAS  Google Scholar 

  • Shimizu, H., Creveling, C.R., Daly, J.W.: Cyclic adenosine 3′,5′-monophosphate formation in brain slices: stimulation by batrachotoxin, ouabain, veratridine and potassium ions. Molec. Pharmacol. 6, 184–188 (1970b).

    CAS  Google Scholar 

  • Shimizu, H., Creveling, C.R., Daly, J.W.: The effect of histamines and other compounds on the formation of adenosine 3′,5′-monophosphate in slices from cerebral cortex. J. Neurochem. 17, 441–444 (1970c).

    CAS  PubMed  Google Scholar 

  • himizu, H., Ichisita, H., Odagiri, H.: Stimulated formation of cyclic adenosine 3′,5′-monophosphate by aspartate and glutamate in cerebral cortical slices of guinea pig. J. biol. Chem. 249, 5955–5962 (1974).

    Google Scholar 

  • Shimizu, H., Tanaka, S., Suzuki, T., Matsukado, Y.: The response of human cerebrum adenyl cyclase to biogenic amines. J. Neurochem. 18, 1157–1161 (1971).

    CAS  PubMed  Google Scholar 

  • Shoemaker, W.J., Balentine, L.T., Siggins, G.R., Hoffer, B.J., Henriksen, S.J., Bloom, F.E.: Characteristics of the release of cyclic adenosine 3′,5′-monophosphate from micropipets by micro-iontophoresis. J. Cyclic Nucleotide Res. 1, 97–106 (1975).

    CAS  PubMed  Google Scholar 

  • Siggins, G.R., Battenberg, E.F., Hoffer, B.J., Bloom, F.E., Steiner, A.L.: Noradrenergic stimulation of cyclic adenosine monophosphate in rat Purkinje neurons: an immunocytochemical study. Science 179, 585–588 (1973).

    CAS  PubMed  Google Scholar 

  • Siggins, G.R., Henriksen, S.J.: Inhibition of rat Purkinje neurons by analogues of cyclic adenosine monophosphate: correlation with protein kinase activation. Science 189, 557–560 (1975).

    Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Cyclic 3′,5′-adenosine monophosphate: possible mediator for the response of cerebellar Purkinje cells to microelectrophoresis of norepinephrine. Science 165, 1018–1020 (1969).

    CAS  PubMed  Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. III. Evidence for mediation of norepinephrine effects by cyclic 3′,5′-adenosine monophosphate. Brain Res. 25, 535–553 (1971a).

    CAS  PubMed  Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Oliver, A.P., Bloom, F.E.: Activation of a central noradrenergic projection to cerebellum. Nature (Lond.) 233, 481–483 (1971b).

    CAS  Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Bloom, F.E.: Prostaglandin-norepinephrine interactions in brain: microelectrophoretic and histochemical correlates. Ann. N.Y. Acad. Sci. 180, 302–323 (1971c).

    CAS  PubMed  Google Scholar 

  • Siggins, G.R., Hoffer, B.J., Ungerstedt, U.: Electrophysiological evidence for involvement of cyclic adenosine monophosphate in dopamine responses of caudate neurons. Life Sci. 15, 779–792 (1974).

    CAS  PubMed  Google Scholar 

  • Siggins, G.R., Oliver, A.P., Hoffer, B.J., Bloom, F.E.: Cyclic adenosine monophosphate and norepinephrine: effects on transmembrane properties of cerebellar Purkinje cells. Science 171, 192–194 (1971d).

    CAS  PubMed  Google Scholar 

  • Simon, L.N., Shuman, D.A., Robins, R.K.: The synthesis and biological activity of analogs of cyclic nucleotides. In: Cellular Mechanisms. Basel: S. Karger 1973.

    Google Scholar 

  • Skolnick, P., Daly, J.W.: The accumulation of adenosine 3′,5′-monophosphate in cerebral cortical slices of the awaking mouse, a neurologic mutant. Brain Res. 73, 513–525 (1974).

    CAS  PubMed  Google Scholar 

  • Skolnick, P., Huang, M., Daly, J., Hoffer, B.J.: Accumulation of adenosine 3′,5′-monophosphate in incubated slices from discrete regions of squirrel monkey cerebral cortex: effect of norepinephrine, serotonin, and adenosine. J. Neurochem. 21, 237–240 (1973).

    CAS  PubMed  Google Scholar 

  • Sloboda, R.D., Rudolph, S.A., Rosenbaum, J.L., Greengard, P.: Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. nat. Acad. Sci. (Wash.) 72, 177–181 (1975).

    CAS  Google Scholar 

  • Soifer, D.: Enzymatic activity in tubulin preparations: Cyclic AMP dependent protein kinase activity of brain microtubule protein. J. Neurochem. 24, 21–33 (1975).

    CAS  PubMed  Google Scholar 

  • Somlyo, A.V., Haeusler, G., Somlyo, A.P.: Cyclic adenosine monophosphate: potassium-dependent action on vascular smooth muscle membrane potential. Science 169, 490–491 (1970).

    CAS  PubMed  Google Scholar 

  • Spiegel, A.M., Aurbach, G.D.: Binding of 5′-guanylyl-imidodiphosphate to turkey erythrocyte membranes and effects on β-adrenergic activated adenylate cyclase. J. biol. Chem. 249, 7630–7636 (1974).

    CAS  PubMed  Google Scholar 

  • Stavinoha, W.B., Pepelko, B., Smith, P.: Microwave radiation to inactivate Cholinesterase in the rat brain prior to analysis for acetylcholine. Pharmacologist 12, 257 (1970).

    Google Scholar 

  • Steiner, A.L., Parker, C.W., Kipnis, D.M.: The measurement of cyclic nucleotides by radioimmunoassay. Advanc. Biochem. Psychopharmacol. 3, 89–112 (1970).

    CAS  Google Scholar 

  • Steiner, A.L., Parker, C.W., Kipnis, D.M.: Radioimmuno-assay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J. biol. Chem. 247, 1106–1113 (1972a).

    CAS  PubMed  Google Scholar 

  • Steiner, A.L., Paghara, A.W., Chase, L.R., Kipnis, D.M.: Radioimmunoassay for cyclic nucleodies. II. Adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate in mammalian tissues and body fluids. J. biol. Chem. 247, 1114–1120 (1972b).

    CAS  PubMed  Google Scholar 

  • Steiner, A.L., Ferrendelli, J.A., Kipnis, D.M.: Radioimmunoassay for cyclic nucleotides. III. Effect of ischemia, changes during development and regional distribution of adenosine 3′,5′-monophosphate and guanosine 3′,5′ monophosphate in mouse brain. J. biol. Chem. 247, 1121–1124 (1972c).

    CAS  PubMed  Google Scholar 

  • Stone, T.W., Taylor, D.A., Bloom, F.E.: Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex. Science 187, 845–847 (1975).

    CAS  PubMed  Google Scholar 

  • Strada, S.J., Uzunov, P., and Weiss, B.: Ontogenetic development of a phosphodiesterase activator and the multiple forms of cyclic AMP phosphodiesterase of rat brain. J. Neurochem. 23, 1097–1103 (1974).

    CAS  PubMed  Google Scholar 

  • Sutherland, E.W., Oye, I., Butcher, R.W.: The action of epinephrine and the role of the adenyl cyclase system in hormone action. Recent Progr. Hormone Res. 21, 623–642 (1965).

    CAS  PubMed  Google Scholar 

  • Sutherland, E.W., Rall, T.W.: Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J. biol. Chem. 232, 1077–1091 (1958).

    CAS  PubMed  Google Scholar 

  • Sutherland, E.W., Rall, T.W., Menon, T.: Adenyl cyclase. I. Distribution, preparation and properties. J. biol. Chem. 237, 1220–1227 (1962).

    CAS  PubMed  Google Scholar 

  • Swillens, S., Cauter, E. von, Dumont, J.E.: Protein kinase and cyclic 3′,5′-AMP: significance of binding and activation constants. Biochim. biophys. Acta (Amst.) 364, 250–259 (1974).

    CAS  Google Scholar 

  • Tada, M., Kirchberger, M.A., Repke, D.I., Katz, A.M.: The stimulation of calcium transport in cardiac sarcoplasmic reticulum by adenosine 3′,5′-monophosphate dependent protein kinase J. biol. Chem. 249, 6174–6180 (1974).

    CAS  PubMed  Google Scholar 

  • Tagliamonte, A., Tagliamonte, P., Forn, J., Perez-Cruet, J., Krishna, G., Gessa, G.L.: Stimulation of brain serotonin synthesis by dibutyryl cyclic AMP in rats. J. Neurochem. 18 1191–1196 (1971).

    CAS  PubMed  Google Scholar 

  • Takamori, M., Ishii, N., Mori, M.: The role of cyclic 3′,5′-adenosine monophosphate in neuromuscular transmission. Arch. Neurol. 29, 420–424 (1973).

    CAS  PubMed  Google Scholar 

  • Tamarind, D.C., Quilliam, J.P.: Synaptic organization and other ultrastructural features of the superior cervical ganglion of the rat, kitten and rabbit. Micron 2, 204–234 (1971).

    Google Scholar 

  • Teshima, Y., Yamazaki, R., Kakiuchi, S.: Effects of ATP on the activity of nucleoside 3′,5′-cyclic monophosphate phosphodiesterase from brain. J. Neurochem. 22, 789–791 (1974).

    CAS  PubMed  Google Scholar 

  • Thierry, A.M., Blanc, G., Sobel, A., Stinus, L., Glowinski, J.: Dopaminergic terminals in the rat cortex. Science 182, 499–501 (1973).

    CAS  PubMed  Google Scholar 

  • Thoenen, H.: Induction of tyrosine hydroxylase in peripheral and central adrenergic neurones by cold exposure of rats. Nature (Lond.) 228, 861–862 (1970).

    CAS  Google Scholar 

  • Thoenen, H., Mueller, R.A., Axelrod, J.: Trans-synaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. exp. Ther. 169, 249–254 (1969).

    CAS  PubMed  Google Scholar 

  • Thoenen, H., Otten, U., Oesch, F.: Trans-synaptic regulation of tyrosine hydroxylase. In: Frontiers in Catecholamine Research. New York: Pergamon Press 1974.

    Google Scholar 

  • Thompson, W.J., Appleman, M.M.: Multiple cyclic nucleotide phosphodiesterases activities from rat brain. Biochemistry (Wash.) 10, 311–316 (1971).

    CAS  Google Scholar 

  • Tomita, T., Sakamoto, Y., Ohba, M.: Conductance increase by adrenaline in guinea pig taenia coli studied with voltage clamp method. Nature (Lond.) 250, 432 (1974).

    CAS  Google Scholar 

  • Triggle, D.J.: Neurotransmitter-receptor Interactions. New York: Academic Press 1971.

    Google Scholar 

  • Tsien, R.W.: Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nature (Lond.) 245, 120–122 (1973).

    CAS  Google Scholar 

  • Tsien, R.W., Giles, W., Greengard, P.: Cyclic AMP mediates the effects of adrenaline on cardiac Purkinje fibers. Nature (Lond.) 240, 181–183 (1972).

    CAS  Google Scholar 

  • Tsien, R.W., Weingart, R.: Cyclic AMP: Cell-to-cell movement and inotropic effect in ventricular muscle, studied by a cut-end method. J. Physiol. (Lond.) 242, 95–96 (1974).

    Google Scholar 

  • Tsou, K.C., Yip, K.F., Lo, K.W.: 1,N6 Etheno-2-aza-adenosine 3′,5′-monophosphate: a new fluorescent substrate for cycle nucleotide phosphodiesterase. Analyt. Biochem. 60, 163–169 (1974).

    CAS  PubMed  Google Scholar 

  • Ueda, T., Maeno, H., Greengard, P.: Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′,5′-monophosphate. J. biol. Chem. 248, 8295–8305 (1973).

    CAS  PubMed  Google Scholar 

  • Ungerstedt, U.: Stereotaxic mapping of the monoamine pathways in rat brain. Acta physiol. scand. 67, 1–48 (1971).

    Google Scholar 

  • Uzunov, P., Revuelta, A., Costa, E.: A role for the endogenous activator of 3′,5′-nucleotide phosphodiesterase in rat adrenal medulla. Molec. Pharmacol. (in press, 1975).

    Google Scholar 

  • Uzunov, P., Shein, H.M., Weiss, B.: Cyclic AMP phosphodiesterase in cloned astrocytoma cells: norepinephrine induces a specific enzyme form. Science 180, 304–306 (1973).

    CAS  PubMed  Google Scholar 

  • Uzunov, P., Shein, H.M., Weiss, B.: Multiple forms of cyclic 3′,5′-AMP phosphodiesterase of rat cerebrum and cloned astrocytoma and neuroblastoma cells. Neuropharmacol. 13, 377–391 (1974).

    CAS  Google Scholar 

  • Uzunov, P., Weiss, B.: Effects of phenothiazine tranquillizers on the cyclic 3′,5′-adenosine monophosphate system of rat brain. Neuropharmacol. 10, 697–708 (1971).

    CAS  Google Scholar 

  • Uzunov, P., Weiss, B.: Psychopharmacological Agents and the cyclic AMP system of rat brain. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.

    Google Scholar 

  • Vassalle, M., Barnabel, O.: Norepinephrine and potassium fluxes in cardiac Purkinje fibers. Pflügers Arch. 322, 287–303 (1971).

    CAS  PubMed  Google Scholar 

  • Veech, R.L., Harris, R.L., Veloso, D., Veech, E.H.: Freezeblowing: a new technique for the study of brain in vivo. J. Neurochem. 20, 183–188 (1973).

    CAS  PubMed  Google Scholar 

  • Vellis, J. de, Brooker, G.: Reversal of catecholamine refractoriness by inhibitors of RNA and protein synthesis. Science 186, 1221–1222 (1974).

    Google Scholar 

  • Verma, S.C., McNeill, J.H.: Action of imidazole on the cardiac inotropic, Phosphorylase activating and cyclic AMP producing effects of norepinephrine and histamine. Res. Commun. Chem. Pathol. Pharmacol. 7, 305–319 (1974).

    CAS  PubMed  Google Scholar 

  • Vesin, M.F., Harbon, S.: The effect of epinephrine, prostaglandins, and their antagonists on adenosine cyclic 3′,5′-monophosphate concentrations and motility of the rat uterus. Molec. Pharmacol. 10, 457–473 (1974).

    CAS  Google Scholar 

  • Voaden, M.J.: The effects of superior cervical ganglionectomy and/or bilateral adrenalectomy on the mitotic acitivity of the adult rat cornea. Exp. Eye Res. 12, 337–341 (1971).

    CAS  PubMed  Google Scholar 

  • Vokaer, A., Iacobelli, S., Kram, R.: Phosphoprotein phosphatase activity associated with estrogen-induced protein in rat uterus. Proc. nat. Acad. Sci. (Wash.) 71, 4482–4486 (1974).

    CAS  Google Scholar 

  • Volicer, L., Gold, B.I.: Effect of ethanol on cyclic AMP levels in the rat brain. Life Sci. 13, 269–280 (1973).

    CAS  PubMed  Google Scholar 

  • von Hungen, K., Roberts, S.: Catecholamine and Ca2+ activation of adenylate cyclase systems in synaptosomal fractions from rat cerebral cortex. Nature (Lond.) 242, 58–60 (1973).

    Google Scholar 

  • von Hungen, K., Roberts, S.: Neurotransmitter-sensitive adenylate cyclase systems in the brain. In: Reviews of Neuroscience, vol. 1. New York: Raven Press 1974.

    Google Scholar 

  • Wagner, R.C., Bitensky, M.W.: Adenylate Cyclase. In: Electron Microscopy of Enzymes. New York: Van Nostrand, Rienhold Co. 1974.

    Google Scholar 

  • Wagner, R.C., Kriener, P., Barrnett, R.J., Bitensky, M.W.: Biochemical characterization and cytochemical localization of a catecholamine-sensitive adenylate cyclase in isolated capillary endothelium. Proc. nat. Acad. Sci. (Wash.) 69, 3175–3180 (1972).

    CAS  Google Scholar 

  • Walker, J.B., Walker, J.P.: Neurohumoral regulation of adenylate cyclase activity in rat striatum. Brain Res. 54, 386–390 (1973a).

    CAS  PubMed  Google Scholar 

  • Walker, J.B., Walker, J.P.: Properties of adenylate cyclase from senescent rat brain. Brain Res. 54, 391–396 (1973b).

    CAS  PubMed  Google Scholar 

  • Walsh, D.A., Perkins, J.P., Krebs, E.G.: An adenosine 3′,5′ monophosphate dependent protein kinase from rabbit skeletal muscle. J. biol. Chem. 243, 3763–3765 (1968).

    CAS  PubMed  Google Scholar 

  • Watanabe, A.M., Besch, H.R. Jr.: Cyclic adenosine monophosphate modulation of slow calcium influx channels in guinea pig heart. Circulat. Res. 35, 316–324 (1974).

    CAS  Google Scholar 

  • Waymire, J.C., Weiner, N., Prasad, K.N.: Regulation of tyrosine hydroxylase activity in cultured mouse neuroblastoma cells: elevation induced by analogs of adenosine 3′,5′ cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 69, 2241–2245 (1972).

    CAS  Google Scholar 

  • Weber, A., Murray, J.M.: Molecular control mechanisms in muscle contraction. Physiol. Rev. 53, 612–673 (1973).

    CAS  PubMed  Google Scholar 

  • Wedner, H.J., Hoffer, B.J., Battenberg, E., Steiner, A.L., Parker, C.W., Bloom, F.E.: A method for detecting intracellular cyclic adenosine monophosphate by immunofluorescence. J. Histochem. Cytochem. 20, 293–295 (1972).

    CAS  PubMed  Google Scholar 

  • Weight, F.F.: Mechanisms of synaptic transmission. Neurosci. Res. Program Bull. 4, 1–27 (1971).

    CAS  Google Scholar 

  • Weight, F.F.: Physiological mechanisms of synaptic modulation. In: The Neurosciences: 3rd Study Program. Cambridge: MIT Press 1974.

    Google Scholar 

  • Weight, F.F., Padjen, A.: Acetylcholine and slow synaptic inhibition in frog sympathetic ganglion cells. Brain Res. 55, 225–228 (1973a).

    CAS  PubMed  Google Scholar 

  • Weight, F.F., Padjen, A.: Slow synaptic inhibition: evidence for synaptic inactivation of sodium conductance in sympathetic ganglion cells. Brain Res. 55, 219–224 (1973b).

    CAS  PubMed  Google Scholar 

  • Weight, F.F., Petzold, G., Greencard, P.: Guanosine 3′,5′-monophosphate in sympathetic ganglia: increase associated with synaptic transmission. Science 186, 942–944 (1974).

    CAS  PubMed  Google Scholar 

  • Weight, F.F., Votava, J.: Slow synaptic excitation in sympathetic ganglion cells: evidence for synaptic activation of potassium conductance. Science 170, 755–758 (1970).

    CAS  PubMed  Google Scholar 

  • Weinrub, I., Chasin, M., Free, C.A., Harris, D.N., Goldenberg, H., Michel, I.M., Palk, U.S., Phillips, M., Samaniego, S., Hess, S.M.J.: Effects of therapeutic agents on cyclic AMP metabolism in vitro. J. pharm. Sci. 61, 1556–1657 (1972).

    Google Scholar 

  • Weiss, B.: Psychopharmacological agents and the cyclic AMP system of rat brain. In: Advances in Cyclic Nucleotide Research, vol. 1. New York: Raven Press 1972.

    Google Scholar 

  • Weiss, B., Costa, E.: Regional and subcellular distribution of adenyl cyclase and 3′,5′-cyclic nucleotide phosphodiesterase in brain and pineal gland. Biochem. Pharmacol. 17, 2107–2116 (1968).

    CAS  PubMed  Google Scholar 

  • Weiss, B., Kidman, A.D.: Neurobiological significance of cyclic 3′,5′-adenosine monophosphate. Advanc. Biochem. Psychopharmacol. 1, 132–164 (1969).

    Google Scholar 

  • Weller, M., Rodnight, R.: Stimulation by cyclic AMP of intrinsic protein kinase activity in ox brain membrane preparations. Nature (Lond.) 225, 187–188 (1970).

    CAS  Google Scholar 

  • Werman, R.: CNS cellular level: membranes. Ann. Rev. Physiol. 34, 337–374 (1972).

    CAS  Google Scholar 

  • White, A.A., Aurbach, G.D.: Detection of guanyl cyclase in mammalian tissues. Biochim. biophys Acta (Amst.) 191, 686–697 (1969).

    CAS  Google Scholar 

  • Whitfield, J.F., Rixon, R.H., McManus, J.P., Balk, S.D.: Calcium, cyclic adenosine 3′,5′-monophosphate, and the control of cell proliferation: a review. In Vitro. 8, 257–278 (1973).

    CAS  PubMed  Google Scholar 

  • Wicks, W.D.: Regulation of protein synthesis by cyclic AMP. In: Advances in Cyclic Nucleotide Research, vol. 4. New York: Raven Press 1974.

    Google Scholar 

  • Wickson, R.D., Boudreau, R.J., Drummond, G.I.: Activation of 3′,5′-cyclic adenosine monophosphate phosphodiesterase by calcium ion and a protein activator. Biochemistry (Wash.) 14, 669–675 (1975).

    CAS  Google Scholar 

  • Will, H., Schirpke, B., Wollenberger, A.: Binding of calcium to a cell membrane-enriched preparation from pig myocardium: increase in calcium affinity upon membrane protein phosphorylation enhanced by a membrane-bound cyclic AMP dependent protein kinase. Acta biol. med. germ. 31, 45–52 (1973).

    Google Scholar 

  • Williams, B.J., Pirch, J.H.: Correlation between brain adenyl cyclase activity and spontaneous motor activity in rats after chronic reserpine treatment. Brain Res. 68, 227–234 (1974).

    CAS  PubMed  Google Scholar 

  • Williams, M., Rodnight, R.: Evidence for a role for protein phosphorylation in synaptic function in the cerebral cortex mediated through a β-noradrenergic receptor. Brain Res. 77, 502–506 (1974).

    CAS  PubMed  Google Scholar 

  • Williams, R.H., Thompson, W.J.: Effect of age upon guanyl cyclase, adenyl cyclase, and cyclic nucleotide phosphodiesterases in rats. Proc. Soc. exp. Biol. (N.Y.) 143, 382–387 (1973).

    CAS  Google Scholar 

  • Williams, T.H., Palay, S.L.: Ultrastructure of the small neurons in the superior cervical ganglion. Brain Res. 15, 17–34 (1969).

    CAS  PubMed  Google Scholar 

  • Wilson, D.F.: The effects of dibutyryl cyclic adenosine 3′,5′-monophosphate, theophylline, and aminophylline on neuromuscular transmission in the rat. J. Pharmacol. exp. Ther. 188, 447–452 (1974).

    CAS  PubMed  Google Scholar 

  • Wilson, D.F., Stubbs, M., Veech, R.L., Erecinska, M., Krebs, H.A.: Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem. J. 140, 57–64 (1974).

    CAS  PubMed  Google Scholar 

  • Woodward, D.J., Hoffer, B.J., Altman, J.: Physiological and pharmacological properties of Purkinje cells in rat cerebellum degranulated by postnatal X-irradiation. J. Neurobiol. 5, 283–304 (1974).

    CAS  PubMed  Google Scholar 

  • Yarbrough, G.G., Lake, N., Phillis, J.W.: The role of calcium in monoamine induced depression of cerebral cortical neurones. Life Sci. 13, 703–711 (1973).

    CAS  Google Scholar 

  • Yokota, R.: The granule-containing cell somata in the superior cervical ganglion of the rat, as studied by a serial sampling method for electron microscopy. Z. Zellforsch. 141, 331–346 (1973).

    CAS  PubMed  Google Scholar 

  • York, D.H.: Dopamine receptor blockade: a central action of chlorpromazine on striatal neurones. Brain Res. 37, 91–99 (1972).

    CAS  PubMed  Google Scholar 

  • Yount, R.G., Bobcock, D., Ballentyne, W., Ohala, D.: Adenylyl-immidodiphosphate; an adenosine triphosphate analog containing a P-N-P linkage. Biochemistry (Wash.) 10, 2484 (1971).

    CAS  Google Scholar 

  • Zanella, J. Jr., Rall, T.W.: Evaluation of electrical pulses and elevated levels of potassium ions as stimulants of adenosine 3′,5′-monophosphate (cyclic AMP) accumulation in guinea pig brain. J. Pharmacol. exp. Ther. 186, 241–252 (1973).

    CAS  PubMed  Google Scholar 

  • Zigmond, R.E., Schon, F., Iversen, L.L.: Increased tyrosine hydroxylase activity in the locus coeruleus of rat brain stem after reserpine treatment and cold stress. Brain Res. 70, 547–552 (1974).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bloom, F.E. (1975). The Role of Cyclic Nucleotides in Central Synaptic Function. In: The Role of Cyclic Nucleotides in Central Synaptic Function / Renal Transport of Amino Acids. Reviews of Physiology, Biochemistry and Pharmacology, vol 74 . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35091-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35091-1_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-34770-6

  • Online ISBN: 978-3-662-35091-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics