Phenotypic Expression and Differentiation: in vitro Chondrogenesis

  • James W. Lash
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 1)

Abstract

Any in vitro analysis of differentiation should take into account three important factors. One is the artifactual nature of the in vitro conditions. The very nature of the culture methodology creates an artifact. This is not meant to imply a deprecation of the study of a created artifact, for in many instances much useful information has been obtained from such studies. The investigator must be aware as to how much transference may be given to in vivo phenomena from in vitro studies. Another factor to take cognizance of is that negative aspects of differentiation in vitro (i. e. “dedifferen-tiation”, or the failure of differentiation) may not be a manifestation of a basic mechanism of differentiation. Observations of this sort may usually be ascribed to the fault of the experimenter and the conditions given the tissue in its foreign environment. A third point to be considered is that the phenotypic expression of differentiation may not be obvious to the observer and may require refined techniques of assay. A cell or tissue that appears “undifferentiated” may actually possess a differentiated metabolic pattern.

Keywords

Agar Polysaccharide Retina Macromolecule Chromato 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cahn, R. D., and M. B. Cahn: Heritability of cellular differentiation: Clonal growth and expression of differentiation in retinal pigment cells in vitro. Proc. nat. Acad. Sci. (Wash.) 55, 106–114 (1966).CrossRefGoogle Scholar
  2. Coon, H. G.: Clonal stability and phenotypic expression of chick cartilage cells in vitro. Proc. nat. Acad. Sci. (Wash.) 55, 66–73 (1966).CrossRefGoogle Scholar
  3. Cooper, G. W.: Induction of somite chondrogenesis by cartilage and notochord: A correlation between inductive activity and specific stages of cytodifferentiation. Develop. Biol. 12, 185–212 (1965).CrossRefPubMedGoogle Scholar
  4. Ellison, M., and E. J. Ambrose: Manuscript (1967).Google Scholar
  5. Fabro, S. P., and L. M. Rinaldini: Loss of ascorbic acid synthesis in embryonic development. Develop. Biol. 11, 468–488 (1965).CrossRefPubMedGoogle Scholar
  6. Flower, M., and C. Grobstein: Interconvertibility of induced morphogenetic responses of mouse embryonic somites to notochord and ventral spinal cord. Develop. Biol. 15, 193–205 (1967).CrossRefGoogle Scholar
  7. Franco-Browder, S., J. de Rydt, and A. Dorfman: The identification of a sulfated mucopolysaccharide in chick embryos. Stages 11–23. Proc. nat. Acad. Sci. (Wash.) 49, 643–647 (1963).CrossRefGoogle Scholar
  8. Glick, M. C., J. W. Lash, and J. W. Madden: Enzymic activities associated with the induction of chondrogenesis in vitro. Biochim. biophys. Acta (Amst.) 83, 84–92 (1964).Google Scholar
  9. Grobstein, C., and G. Parker: In vitro induction of cartilage in mouse somite mesoderm by embryonic spinal cord. Proc. Soc. exp. Biol. (N. Y.) 85, 477–481 (1954).CrossRefGoogle Scholar
  10. Holtzer, H.: An experimental analysis of the development of the spinal column. I. Response of pre-cartilage cells to size variations of the spinal cord. J. exp. Zool. 121, 121–148 (1952).Google Scholar
  11. Holtzer, H.: Control of chondrogenesis in the embryo. Biophys. J. Suppl. 4, 239–250 (1964).CrossRefGoogle Scholar
  12. Johnston, P. M., and C. L. Comar: Autoradiographic studies of the utilization of S35-sulfate by the chick embryo. J. biophys. biochem. Cytol. 3, 231–238 (1957).PubMedCentralCrossRefPubMedGoogle Scholar
  13. Lash, J. W.: Tissue interaction and specific metabolic responses: Chondrogenic induction and differentiation. In: Cytodifferentiation and macromolecular synthesis. Ed. M. Locke, p. 235–260. New York: Academic Press 1963.CrossRefGoogle Scholar
  14. Lash, J. W.: Normal embryology and teratogenesis. Amer. J. Obstet. Gynec. 90, 1193–1207 (1964).PubMedGoogle Scholar
  15. Lash, J. W.: Differential behavior of anterior and posterior embryonic chick somites in vitro. J. exp. Zool. 165, 47–56 (1967).CrossRefPubMedGoogle Scholar
  16. Lash, J. W.: Somitic mesenchyme and its response to cartilage induction. In: Epithelial-mesenchymal interactions. Ed. R. Fleischmajer and R. Billingham, in press. Baltimore: Williams & Wilkins 1968.Google Scholar
  17. Lash, J. W., S. Holtzer, and H. Holtzer: An experimental analysis of the development of the spinal column. VI. Aspects of cartilage induction. Exp. Cell Res. 13, 292–303 (1957).CrossRefPubMedGoogle Scholar
  18. Lash, J. W., F. A. Hommes, and F. Zilliken: Induction of cell differentiation. The in vitro induction of vertebral cartilage with a low-molecular weight tissue component. Biochim. biophys. Acta (Amst.) 56, 313–319 (1962).CrossRefGoogle Scholar
  19. Lash, J. W., M. C. Glick, and J. W. Madden: Cartilage induction in vitro and sulfate-activating enzymes. Nat. Canc. Inst. Monogr. 13, 39–49 (1964).Google Scholar
  20. Lipmann, F.: Biological sulfate activation and transfer. Science 128, 575–580 (1958).CrossRefPubMedGoogle Scholar
  21. Marzullo, G., and J. W. Lash: Acquisition of the chondrocytic phenotype. In: Exp. Biol. Med. Vol. 1, pp. 213–218. Basel-New York: S. Karger 1967.Google Scholar
  22. Medoff, J.: Enzymatic events during cartilage differentiation in chick embryonic limb bud. Develop. Biol. 16, 118–143 (1967).CrossRefPubMedGoogle Scholar
  23. Przybylski, R., and J. M. Blumberg: Ultrastructural aspects of myogenesis in the chick. Lab. Invest. 15, 836–863 (1966).PubMedGoogle Scholar
  24. Rutter, W. J., W. D. Ball, W. S. Brandshaw, W. R. Clark, and T. G. Sanders: Levels of regulation in cytodifferentiation. In: Exp. Biol. Med. Vol. 1, pp. 110–124. Basel-New York: S. Karger 1967.Google Scholar
  25. Searls, R. L.: Isolation of mucopolysaccharide from the pre-cartilaginous embryonic chick limb bud. Proc. exp. Biol. (N. Y.) 118, 1172–1176 (1965).CrossRefGoogle Scholar
  26. Strudel, G.: Influence Morphogene du Tube Nerveux et de la chorde sur la Differenciation de la Colonne Vertebrale. C. R. Soc. Biol. (Paris) 147, 132–133 (1953).Google Scholar
  27. Strudel, G.: Induction de Cartilage in vitro par L’extrait du Tube Nerveux et de la Chorde de L’embryon de Poulet. Develop. Biol. 4, 67–86 (1962).CrossRefPubMedGoogle Scholar
  28. Strudel, G.: Some aspects of organogenesis of the chick spinal column. In: Exp. Biol. Med., Vol. 1, pp. 183–198, Basel-New York: S. Karger 1967.Google Scholar
  29. Watterson, R. L.: Neural tube extirpation in Fundulus heteroclitus and resultant neural arch defects. Biol. Bull. 103, 310 (1952).Google Scholar
  30. Wilt, F.: The ontogeny of chick embryo hemoglobin. Proc. nat. Acad. Sci. (Wash.) 48, 1582–1590 (1962).CrossRefGoogle Scholar
  31. Zilliken, F.: Notochord induced cartilage formation in chick somites. Intact tissues versus extracts. In: Exp. Biol. Med., Vol. 1, pp. 194–212. Basel-New York: S. Karger 1967.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • James W. Lash
    • 1
  1. 1.Department of Anatomy, School of MedicineUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations