Advertisement

Thermophysical Properties of Freon-22

  • V. V. Altunin
  • V. Z. Geller
  • E. K. Petrov
  • D. C. Rasskazov
  • G. A. Spiridonov
Chapter
  • 48 Downloads
Part of the National Standard Reference Data Service of the USSR: A Series of Property Tables book series (NATIONAL STAND., volume 8)

Abstract

Freon-22 (difluorochloromethane) is the most widely investigated freon of the methane series. Up to the present time, 70 experimental works have been published containing very broad experimental information about the thermophysical properties of gaseous and liquid Freon-22 in wide intervals of temperature and pressure. In particular, pvT relationships for Freon-22 were investigated in the range T = 203–473 K at pressure p = 0.1–35 MPa, and about 950 experimental points were obtained. A total of 250 experimental values of heat capacity c p and cv in the range T = 232–473 K at p = 0.1–3.5 MPa are known. Viscosity (N exp ≈ 530) and thermal conductivity (N exp ≈ 360) were measured in the interval T = 115–473 K and p = 0.1–59 MPa.

Keywords

Thermal Conductivity Heat Capacity Thermodynamic Property Transport Property THERMOPHYSICAL Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 3.1.
    Altunin V. V., Gadetsky O. G. Equation of State and Thermodynamic properties of liquid and gaseous Freon 22.—Thermophysical Properties of Substances and Materials. Gosstandart SSSR, GSSSD, 1973, 7, p. 115–135.Google Scholar
  2. 3.2.
    Altunin V. V. Use of a new method for the analysis of measurements for generalizing experimental data on viscosity of Freon-22.—Thermophysical Properties of Substances and Materials. Gosstandart SSSR, GSSSD, 1975, 8, p. 130–141.Google Scholar
  3. 3.3.
    Altunin V. V. Thermophysical properties of Freon-22 on the liquid-vapor equilibrium line.—Thermophysical Properties of Freons. Gosstandart SSSR, GSSSD, 1977, 1.Google Scholar
  4. 3.4.
    Altunin V. V., Bondarenko V. F., Kuznetsov G. O. Present state of investigations of thermodynamic effects of mixing compressed gases. Gosstandart, SSSR, GSSSD, 1977 (Ser. Ob-zornaya Informatsiya).Google Scholar
  5. 3.5.
    Butierskaya C. T. Study of coefficient of dynamic viscosity of Freon-22.—In: Thermophysical Properties of Liquids. Nauka, Moscow, 1970, p. 73–76.Google Scholar
  6. 3.6.
    Butierskaya C. T. Experimental Investigation of Coefficient of Dynamic Viscosity of Freons 22, 114, 115, and C-318 in Liquid and Gaseous States. Author’s Abstract of Candidate Thesis. LTI (Kh) P, Leningrad, 1971.Google Scholar
  7. 3.7.
    Geller Z. I., Nikulshin P. K., Pitnitskaya N. I. Viscosity of liquid Freons on the saturation line.—Kholod. Tekh. Tekhnol., 1970, v. 10, p. 22–29.Google Scholar
  8. 3.8.
    Geller V. Z. Study of Thermophysical Properties of Mangishlak Oil and its Fractions. Author’s Abstract of Candidate Thesis MEI, Moscow, 1968.Google Scholar
  9. 3.9.
    Geller V. Z., Ivanchenko C. I., Peredri V. G. Experimental study of coefficients of dynamic viscosity and thermal conductivity of difluorochloromefhane.—Izv. Vuzov. Neft Gas, 1973, No. 8, p. 61–65.Google Scholar
  10. 3.10.
    Geller V. Z. Study of thermal conductivity of some Freons of the methane series.— Thermophysical Properties of Substances and Materials. Gosstandart SSSR, GSSSD, 1975, 8, p. 162–176.Google Scholar
  11. 3.11.
    Geller V. Z., Karbanov E. M., Gunchuk B. V., Zakharzhevsky V. Y., Lapardin N. I. Investigation of viscosity coefficient of some liquefied gases near the saturation curve.—Gazov. Promst., 1976, No. 3, p. 32–33.Google Scholar
  12. 3.12.
    Gunchuk B. V., Karbanov E. M., Zakgarzhevsky V. Y. Investigation of viscosity coefficient of some Freons on the saturation line.—Thermophysical Properties of Substances and Materials. Gosstandart SSSR, GSSSD, 1977, 11, p. 39–46.Google Scholar
  13. 3.13.
    Dorokhov A. R., Kiriyanenko A. A., Soloviov A. N. Surface tension of Freons.—In: Thermophysical Properties of Freons. Nauka, Novosibirsk, 1969, p. 43–61.Google Scholar
  14. 3.14.
    Zhelezny V. P. Experimental study of surface tension of Freons-22 and 12B1.— Kholod. Tekh. Tekhnol., 1976, v. 24, p. 68–71.Google Scholar
  15. 3.15.
    Zenkevich V. B. Experimental Study of Thermophysical Properties of Liquid Fuels and Lubricants. Author’s Abstract of Candidate Thesis, MEI, Moscow, 1961.Google Scholar
  16. 3.16.
    Kletsky A. V. Elasticity curve of Freon-22.—Enz. Phyz. Zh., 1964, v. 7, p. 41–43.Google Scholar
  17. 3.17.
    Kletsky A. V. Experimental study of vapor pressure curve and specific volumes of Freon-22.—Kholod. Tekh., 1964, No. 4, p. 37–40.Google Scholar
  18. 3.18.
    Kletsky A. V. Thermodynamic properties of Freon-22.—Kholod. Tekh., 1964, No. 6, p. 70–72.Google Scholar
  19. 3.19.
    Kletsky A. V. h-lg P Diagram for Freon-22.—Kholod. Tekh., 1965, No. 3, p. 71–72.Google Scholar
  20. 3.20.
    Kletsky A. V., Butierskaya C. T. Coefficient of dynamic viscosity of Freon-22.— Kholod. Tekh., 1973, No. 6, p. 31–33.Google Scholar
  21. 3.21.
    Kletsky A. V., Tsuranova T. N. Density and equation of state of liquid Freon-22.— Thermophysical Properties of Substances and Materials. Gosstandart SSSR, GSSSD, 1975, 8, p. 79–83.Google Scholar
  22. 3.22.
    Lagutina L. M. Experimental study of pvT behavior of Freon-22.—Kholod. Tekh., 1966, No. 12, p. 25–28.Google Scholar
  23. 3.23.
    Lagutina L. M. Thermodynamic Study of Difluorochloromethane Using Acoustic and Piezometric Methods. Author’s Abstract of Candidate Thesis, MIFI, Moscow, 1967.Google Scholar
  24. 3.24.
    Latieshev V. P., Gittelson E. P. Volatility of vapors of Freons-12, 22, and 142.— Kholod. Tekh., 1968, No. 8, p. 32–34.Google Scholar
  25. 3.25.
    Novikov I. I., Lagutina L. M. Experimental study of speed of sound propagation in saturated and superheated vapors of difluorochloromethane.—PMTE, 1967, No. 2, p. 147–149.Google Scholar
  26. 3.26.
    Peredri V. G. Study of Thermal Conductivity of Freons of the Methane and Ethane Series. Author’s Abstract of Candidate Thesis, OT1PP, Odessa, 1975.Google Scholar
  27. 3.27.
    Perelshtein I. I. Speed of sound and isentropic index in superheated vapors of Freon 12, 13, and 22.—Kholod. Tekh., 1973, No. 3, p. 21–28.Google Scholar
  28. 3.28.
    Sadiekov A. Kh., Gabdrakhmanov R. G., Briekov V. P., Mukhamedziyanov G. Kh. Experimental study of thermal conductivity coefficient for some Freons of the methane series.—Tr. Kazan. Khim. Tekhnol. Inst., 1971, v. 47, p. 35–39.Google Scholar
  29. 3.29.
    Tkachev A. G., Butierskaya C. T., Agaev N. A. Study of viscosity of Freons 22, 114, 115, and C318.—Kholod. Tekh., 1971, No. 4, p. 39–42.Google Scholar
  30. 3.30.
    Tsvetkov O. B. Thermal conductivity of liquid Freons of the methane and ethane series.—Kholod. Tekh., 1965, No. 4, p. 28–31.Google Scholar
  31. 3.31.
    Tsvetkov O. B., Polyakov N. A. Thermal conductivity of freon-22.—Thermophysical Properties of Substances and Materials. Gosstandart SSSR, GSSSD, 1975, 8, p. 177–182.Google Scholar
  32. 3.32.
    Tchaikovsky V. F., Geller V. Z., Bondar G. E. Experimental study of coefficient of dynamic viscosity for Freon-22 at low temperatures.—Thermophysical Properties of Freons. Gosstandart SSSR, GSSSD, 1977, 1.Google Scholar
  33. 3.33.
    Tchernieva L. I. Study of thermal conductivity of Freon-22.—Kholod. Tekh., 1953, No. 3, p. 60–63.Google Scholar
  34. 3.34.
    Baehr H. D., Duicu T. N., Pollak R. A canonical equation of state for gaseous R 22 with enthalpy, entropy and pressure as variables.—In: Some thermophysical properties of refrigerants and insulants. Paris, 1973, p. 15–20.Google Scholar
  35. 3.35.
    Benning A. F., Markwood W. H. The viscosities of freon refrigerants.—Refr. Engng., 1939, v. 37, p. 243–247.Google Scholar
  36. 3.36.
    Bier K., Ernst G., Maurer G. Flow apparatus for measuring the heat capacity and the Joule-Thomson coefficient of gases.—J. Chem. Thermodyn., 1974, v. 6, p. 1027–1037.CrossRefGoogle Scholar
  37. 3.37.
    Booth H. S., Swinehart C. F. The critical constants and vapor pressures at high pressure of some gaseous fluorides of group IV.—J. Amer. Chem. Soc, 1935, v. 57, p. 1337–1342.CrossRefGoogle Scholar
  38. 3.38.
    Donaldson A. B. On the estimation of thermal conductivity of organic vapors. Data for some Freons.—Ind. Eng. Chem. Fundament., 1975, v. 14, p. 325–328.CrossRefGoogle Scholar
  39. 3.39.
    Djalalian W. H. Messungen der Wärmeleitzahl von Flüssigkeiten mit einer stationären Hitzdrathmethode.—Kältetechnik, 1966, Bd. 18, S. 410–415.Google Scholar
  40. 3.40.
    Ernst G., Büsser J. Ideal and real gas state heat capacities c p of C3H8, i—C4H10, C2F5C1, CH2C1CF3, CF2C1CFC2 and CHF2C1—J. Chem. Thermodyn., 1970, v. 2, p. 787–791.CrossRefGoogle Scholar
  41. 3.41.
    Gelles E., Pitzer K. Thermodynamic functions of the halogenated methanes.—J. Amer. Chem. Soc, 1953, v. 75, p. 5259–5267.CrossRefGoogle Scholar
  42. 3.42.
    Grassman P., Straumann W., Widmer F., Jobst W. Measurements of thermal conductivities of liquids by an unsteady state method.—In: Progress in Internat, res. on thermod. transp. prop. Princeton, 1962, p. 447–453.Google Scholar
  43. 3.43.
    Grassman P., Jobst W. A non-steady-state method for the thermal conductivity of liquid and gases.—In: Proc. XI Internat, congr. of refr. Münich, 1963; London, Pergamon Press, 1965, v. I, p. 301–305.Google Scholar
  44. 3.44.
    Hajjar R. F., MacWood G. E. Second virial coefficients and the force constants 0 and r0 of six halogensubstituted methans.—J. Chem. Phys., 1968, v. 49, p. 4567–4570.ADSCrossRefGoogle Scholar
  45. 3.45.
    Hajjar R. F., MacWood C. E. Determination of the second virial coefficients of six fluorochloromethans by a gas balance method in the range 40 to 130°C.—J. Chem. Eng. Data, 1970, v. 15, p. 3–6.CrossRefGoogle Scholar
  46. 3.46.
    Haworth W. S., Sutton L. E. The second density virial coefficients of some polar gases.—Trans. Farad. Soc, 1971, v. 67, p. 2907–2914.CrossRefGoogle Scholar
  47. 3.47.
    Kokemak R. P., Feldman C. L.—ASHRAE Journal, 1971, v. 13, No. 7, p. 59–61.Google Scholar
  48. 3.48.
    Kumagai A., Iwasaki H. Compressibility factor of chlorodifluoromethane.—Preprint of 13th High pressure conference of Japan, 1971, p. 146–148.Google Scholar
  49. 3.49.
    Latto B., Hesoun P., Ashrani S. C. Absolute viscosity and molecular parameters for R 13, R 500, R 12 and R 22.—In: Proc. fifth sympos. on thermophys. prop. ASME, N.Y., 1970, p. 177–185.Google Scholar
  50. 3.50.
    Martin J. J. Equations of state.—Ind. Eng. Chem., 1967, v. 59, p. 34–52.CrossRefGoogle Scholar
  51. 3.51.
    Masia A. P., Bracero A. V., Rienda B. J. Variacion de la conductividad calorífica con la presion en ocho deviados halogenados del metano.—Anales real soc. esp. fis. quim., v. A 60, No. 1–2, 1964, p. 89–108.Google Scholar
  52. 3.52.
    Meyer K. J. Über den Zusammenhang zwischen der Schallgeschwindigkeit und der Wärmeleitfähigkeit bei flussigen fluor-chlor-derivaten des Methans und Äthans.—Kältetechnik, 1969, Bd. 21, S. 270–275.Google Scholar
  53. 3.53.
    Miyahara Y., Richardson E. G.—J. Acoust. Soc. Amer., 1956, v. 28, No. 6, p. 1016–1018.ADSCrossRefGoogle Scholar
  54. 3.54.
    Morsy T. E. Die specifische Wärme von Tetrafluomethan, Difluormonochlormethan, Tetrafluodichloräthan und Pentafluormonochloräthan in der Gasphase.—Kältetechnik, 1966, Bd. 18, S. 373–374.Google Scholar
  55. 3.55.
    Neilson E. F., White D. The heat capacity, heat of fusion, heat of transition and heat of vaporization of Chlorodiffluoromethane between 16 K and the boiling point.—J. Amer. Chem. Soc, 1957, v. 79, p. 5618–5621.CrossRefGoogle Scholar
  56. 3.56.
    Oguchi K., Matsushita Y., Sagara T., Watanabe K., Tanishita T. Pressure-volume-temperature properties of R 22 in liquid and gaseous states.—Preprint XIV Congress internat, du froid. Moscow, 1975, Sec. B I.Google Scholar
  57. 3.57.
    Puranasamriddhi D. Messung der Wärmeleitfähigkeit von Flüssigkeiten und Flüssigkeitsgemischen.—Kältetechnik, 1966, Bd. 18, S. 445–450.Google Scholar
  58. 3.58.
    Sale P. Mesure de la conductivite thermique de fluides frigorines par la méthode.— Bull. Inst. Internat. Froid. Annexe 2. Paris, 1964, p. 145–151.Google Scholar
  59. 3.59.
    Srichand M., Tirunarayanan M. A., Ramachandran A. Studies of the viscosity of mixtures of R 12 and R 22 vapors.—ASHRAE Journal., 1970, v. 12, p. 61–66.Google Scholar
  60. 3.60.
    Steinle H. Über die Oberflächenspannung von Kältemitteln, Kältemaschinenölen und deren Gemischen.—Kältetechnik, 1960, Bd. 12, S. 334–339.Google Scholar
  61. 3.61.
    Suther H., Cole R. H. Dielectric and pressure virial coefficients of imperfect gases. III. CC1F2H.—J. Chem. Phys., 1971, v. 54, p. 4988–4989.ADSCrossRefGoogle Scholar
  62. 3.62.
    Tanishita I., Oguchi K., et al. Pressure-volume-Temperature properties of R-503.—In: Some thermophysical properties of refrigerant and insulants. Paris, 1973, p. 25–31.Google Scholar
  63. 3.63.
    Weissman H. B., Meister A. G., Cleveland F. E. Infrared spectral data and assignments for CHC12F and CHC1F2 and potential energy constants and calculated thermodynamic properties.—J. Chem. Phys., 1958, v. 29, 72–77.ADSCrossRefGoogle Scholar
  64. 3.64.
    Widmer F. Messung der Wärmeleitfähigkeit von Flüssigkeiten, insbesordere Kältemitteln nach einem instationaren Verfahren.—Kältetechnik, 1962, Bd: 14, p. 38.Google Scholar
  65. 3.65.
    Yakobson V.—Kholod. Tekh., 1960, v. 37, p. 55–58.Google Scholar
  66. 3.66.
    Zander M. Pressure-volume-temperature behavior of chlorodifluoromethane in the gaseous and liquid states.—In: Proc. fourth sympos. thermophys. prop., ASME, N.Y., 1968, p. 114–123.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • V. V. Altunin
  • V. Z. Geller
  • E. K. Petrov
  • D. C. Rasskazov
  • G. A. Spiridonov

There are no affiliations available

Personalised recommendations