Advertisement

Thermophysical Properties of Freon-20

  • V. V. Altunin
  • V. Z. Geller
  • E. K. Petrov
  • D. C. Rasskazov
  • G. A. Spiridonov
Chapter
  • 51 Downloads
Part of the National Standard Reference Data Service of the USSR: A Series of Property Tables book series (NATIONAL STAND., volume 8)

Abstract

Freon-20 (trichloromethane, chloroform) is a high-boiling cooling agent, and its thermophysical properties at elevated pressures have been considerably less scrutinized than other freons of the methane series. At low pressures, there are relatively extensive experimental data about the thermodynamic and transport properties of Freon-20. But this information is not generalized, and comprehensive reference data about the thermophysical properties of Freon-20 are lacking.

Keywords

Thermal Conductivity Methane Series THERMOPHYSICAL Property Saturated Vapor Pressure Virial Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1.
    Altunin V. V. Method of calculating thermodynamic properties of real gas mixtures from a limited quantity of initial experimental data.—Teploenergetika, 1963, No. 4, p. 78–84.Google Scholar
  2. 1.2.
    Altunin V. V. Surface tension of freons-21, 22, and 23.—Thermophysical Properties of Freons. Gosstandart SSSR, GSSSD, 1977, 1.Google Scholar
  3. 1.3.
    Geller V. Z. Viscosity of Freon-21, 22, and 23.—Kholod. Tekh. Tekhnol., 1975, v. 22, p. 41–44.Google Scholar
  4. 1.4.
    Geller V. Z. Generalization of experimental data on thermal conductivity of Freons-21, 22, and 23.—Enzh. Fiz. Zh., 1977, v. 33, No. 1, p. 75–83.Google Scholar
  5. 1.5.
    Golubev I. F. Viscosity of Gases and Gaseous Mixtures. Phyzmatgiz, Moscow, 1959; available in English translation from NT1S, Springfield, Va., as TT 70–50022, 1959.Google Scholar
  6. 1.6.
    Golubev I. F., Gnezdilov N. E. Viscosity of Gaseous Mixtures. Izd-vo Standartov, Moscow, 1971.Google Scholar
  7. 1.7.
    Gurvich L. V., Khachuruzov G. A., Medvedev V. A., et al. Thermodynamic Properties of Individual Substances. Izd-vo AN SSSR, Moscow, 1962, v. 1–2.Google Scholar
  8. 1.8.
    Dorokhov A. P., Kiriyanenko A. A., Soloviov A. N.Surface tension of Freons.— PMTF, 1969, No. 1, p. 93–96.Google Scholar
  9. 1.9.
    Zhokhovsky M. K. About some laws governing the fusion of substances and their values for high pressure scale.—Izmer. Tekh., 1958, No. 2, p. 16–21.Google Scholar
  10. 1.10.
    Zhokhovsky M. K. Volume change during fusion under pressure.—Zh. Fiz. Khim., 1963, v. 37, p. 37, p. 2635–2639.Google Scholar
  11. 1.11.
    Zaalishvili Sh. D., Belousova Z. C., Kolesko L. E. Second virial coefficient of vapors and their mixtures. V. System Chloroform-Benzol.—Zh. Fiz. Khim., 1965, v. 39, p. 447–450.Google Scholar
  12. 1.12.
    Klimenko A. P., Krasnoouky C. I., Kolesnik V. M. The use of generalized equations for the calculation of thermodynamic properties of Freons on computers.—Kholod. Tekh. Tekhnol., 1976, v. 24, p. 75–79.Google Scholar
  13. 1.13.
    Lapidus I. I., Niselson L. A., Seifer A. L. Fundamental thermodynamic properties and characteristics of halogenated monoselenium and methane.—Thermophysical Characteristics of Substances. Gosstandart SSSR, GSSSD, 1968, 1, p. 103–135.Google Scholar
  14. 1.14.
    Perelshtein I. I. Generalized equations of state and vapor pressure curve for Freons.— Kholod. Tekh., 1967, No. 3, p. 27–33.Google Scholar
  15. 1.15.
    Perelshtein I. I., Parushin E. B. Generalized temperature dependence for saturated vapor pressure and density of boiling liquids.—In: Thermodynamic Properties of the Most Important Working Substances for Refrigerating Machines.—Tr. VNI (Kh) I, Moscow, 1976, p. 13–26.Google Scholar
  16. 1.16.
    Filipov L. P. Thermal conductivity of 50 organic liquids.—Vestn. MGU. Ser. Fiz. Mat. Yestestv. 1954, v. 8, No. 12, p. 45–48.Google Scholar
  17. 1.17.
    Filipov L. P. Method of calculation and prediction of properties of liquids and gases on the basis of theory of thermodynamic similarity.—In: Review of Thermophysical Properties of Substances, v. 2, Moscow, 1977.Google Scholar
  18. 1.18.
    Tsvetkov O. B., Laptiev U. A., Poliakova N. A. Thermal conductivity of gaseous Freons at atmospheric pressure.—In: Machines and Apparatus for Refrigeration and Cryogenic Engineering and Air Conditioning. Izd-vo LTI (Kh) P, Leningrad, 1976, p. 179–182.Google Scholar
  19. 1.19.
    Aihara A.—J. Chem. Soc. Japan, 1949, v. 70, p. 384–386.Google Scholar
  20. 1.20.
    Babb S. E. Parameters in the Simon equation relating pressure and melting temperature.—Rev. Modern. Phys., 1963, v. 35, p. 400–413.ADSCrossRefzbMATHGoogle Scholar
  21. 1.21.
    Bates O., Hazzard G., Palmer G. Thermal conductivity of liquids.—Ind. Eng. Chem., 1941, v. 33, p. 275–366.CrossRefGoogle Scholar
  22. 1.22.
    Beckmann E., Liesche O. Ebulioskopisches verhaben von Lösungsmitteln bei verchie-denen. Drucken.—Z. Phys. Chem., 1914, Bd. 88, S. 23–34.Google Scholar
  23. 1.23.
    Braune H., Linke R. Über die innere Reibung einiger Gase und Dampfe III.—Z. Phys. Chem., 1930, Bd. A 148, S. 195–215.Google Scholar
  24. 1.24.
    Bridgman P. W. The phase diagramm of eleven substances with especial reference to the melting curve.—Phys. Rev., 1914, v. 3, p. 153–203.ADSCrossRefGoogle Scholar
  25. 1.25.
    Bridgman P. W.—Proc. Amer. Acad., 1941, v. 74, p. 12–28.Google Scholar
  26. 1.26.
    Coop I. E. The dielectric constants of ether-chloroform mixtures.—Trans. Farad. Soc, 1937, v. 33, p. 583–590.CrossRefGoogle Scholar
  27. 1.27.
    Dolezalek F., Schulze A. Zur Theorie der binären Gemische und Konzentrierten Lösungen. IV— Z. phys. ehem., 1913, Bd. 83, S. 45–50.Google Scholar
  28. 1.28.
    Drucker C, Jumeno E., Kangro W. Dampfdrucke flüssiger Stoffe bei niedrigen Temperaturen.—Z. Phys. Chem., 1915, Bd. 90, S. 513–552.Google Scholar
  29. 1.29.
    Djalalian W. Measurement of the thermalconductivity of liquid refrigerants at low temperatures.—Bull. Inst. Intern. Froid. Annexe 2. Turin, 1964, p. 153–165.Google Scholar
  30. 1.30.
    Eucken A. Über des Wärmeleitvermögen, die spezifische Wärme und die innere Reibung der Gase.—Phys. Z., 1913, Bd. 14, S. 324–332.Google Scholar
  31. 1.31.
    Fort R. J., Moore W. R. Adiabatic compressibilities of binary liquid mixtures.—Trans. Farad. Soc, 1965, v. 61, p. 2102–2111.CrossRefGoogle Scholar
  32. 1.32.
    Francis P. G., McGlashan M. L. Second virial coefficients of vapour mixtures.— Trans. Farad. Soc, 1955, v. 51, p. 593–599.CrossRefGoogle Scholar
  33. 1.33.
    Gelles E., Pitzer K. S. Thermodynamic functions of the halogenated methanes.—J. Am. Chem. Soc, 1953, v. 75, p. 5259–5267.CrossRefGoogle Scholar
  34. 1.34.
    Harrison D., Moelwyn-Hughes E. A. The heat capacities of certain liquids.—Proc. Roy. Soc, 1957, v. 239 A, p. 230–246.ADSCrossRefGoogle Scholar
  35. 1.35.
    Held E., Drunen F. The measurement of the thermal conductivity of liquids.—Proc. VII Intern. Congr. Appl. Mech., 1948, v. 3, p. 79–90.Google Scholar
  36. 1.36.
    Herz W., Rathman W. Physikalische Konstanten einiger als Lösungsmittel wichtiger chlorierter Kohlen-Wasserstoffe.—Chem. Ztg., 1912, Bd. 36, S. 1417–1418.Google Scholar
  37. 1.37.
    Herz W., Neukirch E. Zur Kenntnis Kritischer Grössen.—Z. Phys. Chem., 1923, Bd. 104, S. 433–450.Google Scholar
  38. 1.38.
    Hutchinson E. On the measurement of the thermal conductivity of liquids.—Trans. Farad. Soc, 1945, v. 41, p. 87–90.CrossRefGoogle Scholar
  39. 1.39.
    JANAF thermochemical tables. 2nd ed./USA; Nat. Bur. Standards, NSRDS-NBS37, 1971.Google Scholar
  40. 1.40.
    Kudchadker A. P., Alani C. H., Zwolinski B. J. The critical constants of organic substances.—Chem. Rev., 1968, v. 68, p. 659–735.CrossRefGoogle Scholar
  41. 1.41.
    Kuenan J. P., Robson W. G. Observations on mixtures with minimum or maximum vapor pressure.—Phil. Mag., 1902, v. 4, p. 116–132.CrossRefGoogle Scholar
  42. 1.42.
    Lambert J. D. et al. Virial coefficients some of organic vapours.—Proc. Roy. Soc, 1949, v. A 196, p. 113–135.ADSCrossRefGoogle Scholar
  43. 1.43.
    Lambert J. D., Staines E. N., Woods S. D. Thermal conductivities of organic vapours. —Proc. Roy. Soc, 1950, v. A 200, p. 262–271.ADSCrossRefGoogle Scholar
  44. 1.44.
    Landolt—Börnstein. 6 Auflage. Bd. 2, Teil 5a. Springer Verlag, 1969, S. 195.Google Scholar
  45. 1.45.
    Mason H. Thermal conductivity of some industrial liquids from 0 to 100°C.—Trans. ASME, 1954, v. 5, p. 817–821.Google Scholar
  46. 1.46.
    Mathews J. H. The accurate measurement of heats of vaporization of liquids.—J. Amer. Chem. Soc, 1926, v. 48, p. 562–576.CrossRefGoogle Scholar
  47. 1.47.
    Miller Ch. C. The Stokes—Einstein laws for diffusion in solution.—Proc. Roy. Soc, 1924, v. A 106, p. 724–749.ADSCrossRefGoogle Scholar
  48. 1.48.
    Pal A. K., Barua A. K. Intermolecular potentials and viscosities of some polar organic vapours.—Brit. J. Appl. Phys. (2), 1968, v. 1, p. 71–76.Google Scholar
  49. 1.49.
    Phillips T. W., Murphy K. P. Liquid viscosity of halogenated refrigerants.—ASHRAE Trans., 1971, v. 77, part. II, p. 146–156.Google Scholar
  50. 1.50.
    Phillips T. W., Murphy K. P. Liquid viscosity of halocarbons.—J. Chem. Eng. Data, 1970, v. 15, p. 304–307.CrossRefGoogle Scholar
  51. 1.51.
    Rappanecker K. Über die Reibungskoeffizienten von Dämpfen und ihre Abhängigkeit von der Temperatur.—Z. phys. Chem., 1910, Bd. 72, S. 695–722.Google Scholar
  52. 1.52.
    Rex A. Über die Löslichkeit der Halogenderivate der Kohlenwasserstoffe in Wasser.— Z. phys. Chem., 1906, Bd. 55, S. 355–377.Google Scholar
  53. 1.53.
    Riedel L. Messung der Wärmeleitfähigkeit von organischen Flüssigkeiten, insbesondere von Kältemitteln.—Forsch. Geb. Ing.-Wes., 1940, Bd. 11, S. 340–347.CrossRefGoogle Scholar
  54. 1.54.
    Rodgers A. S., Chao J., Wilhoit R. C, Zwolinski B. Ideal gas thermodynamic Properties of eight Chloro- and fluoromethanes.—J. Phys. Chem. Ref. Data, 1974, v. 3, p. 117–140.ADSCrossRefGoogle Scholar
  55. 1.55.
    Scatchard G., Raymond C. L. Vapor-liquid equilibrium. II Chloroform—Ethanol mixtures.—J. Amer. Chem. Soc, 1938, v. 60, p. 1278–1287.CrossRefGoogle Scholar
  56. 1.56.
    Schmidt G. C. Binäre Gemische.—Z. Phys. Chem., 1926, Bd. 121, S. 221–253.Google Scholar
  57. 1.57.
    Schulze A. Über das Gleichgewicht in kondensierten Systemen.—Z. phys. Chem., 1921, Bd. 97, S. 388–416.Google Scholar
  58. 1.58.
    Seshadri D. N., Viswanath D. S., Kuloor N. R. Thermodynamic properties of chloroform.—J. Indian Inst. Sei., 1968, v. 50, No. 3, p. 179–199.Google Scholar
  59. 1.59.
    Smyth C. P., Morgan S. O. The temperature dependence of the polarization in certain liquid mixtures.—J. Amer. Chem. Soc, 1928, v. 50, p. 1547–1560.CrossRefGoogle Scholar
  60. 1.60.
    Staveley L. A., Tupman W. I., Hart K. R. Some thermodynamic properties of the systems acetone + chloroform.—Trans. Farad. Soc, 1955, v. 51, p. 323–343.CrossRefGoogle Scholar
  61. 1.61.
    Stull D. R. Vapor pressure of pure substance organic compounds.—Ind. Eng. Chem., 1947, v. 39, p. 517–540.CrossRefGoogle Scholar
  62. 1.62.
    Suhrmann R. Über die Druckabhängigkeit der Däpfing einer um ihre vertikale Achse schwingenden Scheibe.—Z. Phys., 1923, Bd. 14, S. 56–62.ADSCrossRefGoogle Scholar
  63. 1.63.
    Tauscher W. A. Messung der Wärmeleitfähigkeit flüssiger Kältemittel mit einem instationären Hitzdrathverfahren.—Kältetechnik, 1967, Bd. 19, S. 288–292.Google Scholar
  64. 1.64.
    Thorpe E., Rodger J. W. On the relations between the viscosity of liquids and their chemical nature.—Phil. Trans. Roy. Soc, 1897, v. A 189, p. 71 – 107.ADSCrossRefGoogle Scholar
  65. 1.65.
    Titani T. The viscosity of vapours of organic compounds.—Bull. Chem. Soc. Japans, 1933, v. 8, p. 255–267.CrossRefGoogle Scholar
  66. 1.66.
    Tsakalotes D. E. Sur la hydrates des acides gras d’apres les mesures de viscosité de leurs solutions.—Compt. rend., 1908, v. 146, s. 1146–1149.Google Scholar
  67. 1.67.
    Vines R. G., Bennett L. A. The thermal conductivity of organic vapors.—J. Chem. Phys., 1954, v. 22, p. 360–366.ADSCrossRefGoogle Scholar
  68. 1.68.
    Vogel H. Über die Viscosität einiger Gase und ihre Temperaturabhängigkeit bei tiefen Temperaturen.—Ann. Physik, 1914, Bd. 43, S. 1235–1272.ADSCrossRefGoogle Scholar
  69. 1.69.
    Weber R. Untersuchungen über die Wärmeleitung in Flüssigkeiten.—Ann. Physik, 1895, Bd. 11, S. 1047–1060.Google Scholar
  70. 1.70.
    Williams J. W., Daniels F. The specific heats of binary mixtures.—J Amer. Chem. Soc, 1925, v. 47, p. 1490–1503.CrossRefGoogle Scholar
  71. 1.71.
    Wright R. Densities of saturated vapours.—J. Phys. Chem., 1932, v. 36, p. 2793–2795.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • V. V. Altunin
  • V. Z. Geller
  • E. K. Petrov
  • D. C. Rasskazov
  • G. A. Spiridonov

There are no affiliations available

Personalised recommendations