Skip to main content

Beta vulgaris L. (Sugar Beet): In Vitro Culture and the Production of Glucosidases

  • Chapter
  • 416 Accesses

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 28))

Abstract

Sugar beet (Beta vulgaris L.) grows wild on the eastern coast of the Mediterranean Sea and in Central Asia. About 40% of the demand for sugar in the world is supplied by sugar beet (Takahashi and Hoshikawa 1989). It is cultivated in the cold regions of the globe and in the temperate zone, where the climate is not suitable for cultivating sugarcane. The main producing countries are the former USSR, the USA, France, Poland, Germany, and Italy. About 85% of world production is from Europe (Takahashi and Hoshikawa 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelova AA, Atanassov AI, Stambolova MA, Nikolov TK (1974) Study of invertase activity and sugar content in a sugar beet tissue culture grown on a medium with chloramphenicol. Fiziol Rast (Mosc) 21:1021–1024

    CAS  Google Scholar 

  • Atanassov AI (1986) Sugar beet (Beta vulgaris L.) In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 2, Crops I. Springer, Berlin Heidelberg New York, pp 462–470

    Google Scholar 

  • Avigad G (1978) Lectin-bound alcohol and lactic dehydrogenases as a reagent for the visual detection of glycoproteins. Anal biochem 86:443–449

    Article  PubMed  CAS  Google Scholar 

  • Bergen P (1967) Dry matter of the petiole as an index for the selection of sugar beet plants. J Am Soc Sugar Beet Technol 14:396–399

    Article  Google Scholar 

  • Chatfield JM, Armstrong DJ (1988) Cytokinin oxidase from Phaseolus vulgaris callus cultures. Affinity for Concanavalin A. Plant Physiol 88:245–247

    Article  CAS  Google Scholar 

  • Chiba S, Inomata S, Matsui H, Shimomura T (1978) Purification and properties of an α-glucosidase (glucoamylase) in sugar beet seed. Agric Biol Chem 42:241–245

    Article  CAS  Google Scholar 

  • Doney DL, Theurer JC (1983) Genetics of cell size and sucrose concentration in sugarbeet. Crop Sci 23:904–907

    Article  Google Scholar 

  • Doney DL, Wyse RE, Theurer JC (1981) The relationship between cell size, yield, and sucrose concentration of the sugarbeet root. Can J Plant Sci 61:447–453

    Article  Google Scholar 

  • Dubinina IM, Burakhanova EA, Kudryavtseva LF (1982) Regulation of invertase activity in sugar beet tissue cultures. Fiziol Rast (Mosc) 29:1188–1194

    CAS  Google Scholar 

  • Faye L, Berjonneau C (1979) Evidence for the glycoprotein nature of radish β-fructosidase. Biochimie 61:51–59

    Article  PubMed  CAS  Google Scholar 

  • Ferro-Novick S, Hansen W, Schaure I (1984) Genes required for completion of import of proteins into the endoplasmic reticulum in yeast. J Cell Biol 98:44–53

    Article  PubMed  CAS  Google Scholar 

  • Gascon S, Neumann NP, Lampen JO (1968) Comparative study of the properties of the purified internal and external invertase from yeast. J Biol Chem 243:1573–1577

    PubMed  CAS  Google Scholar 

  • Giaquinta RT (1979) Sucrose translocation and storage in the sugar beet. Plant Physiol 63:828–832

    Article  PubMed  CAS  Google Scholar 

  • Goldstein IJ (1976) Carbohydrate binding specificity of Concanavalin A. In: Bittiger J, Schnebli HP (eds) Concanavalin A as a tool. Wiley, London, pp 55–65

    Google Scholar 

  • Guffanti AA, Corpe WA (1976) Partial purification and characterization of α-glucosidase from Pseudomonas fluorescens W. Arch Microbiol 107:269–276

    Article  PubMed  CAS  Google Scholar 

  • Hall RD, Pedersen C, Krens FA (1994) Regeneration of plants from protoplasts of Beta vulgaris (Sugarbeet). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 29. Plant protoplasts and genetic engineering V. Springer Berlin Heidelberg New York, pp 14-35

    Google Scholar 

  • Hatch MD, Sacher JM, Glasziou KT (1963) Sugar accumulation cycle in sugarcane. I. Studies in enzymes of the cycle. Plant Physiol 38:338–343

    Article  PubMed  CAS  Google Scholar 

  • Kudryavtseva LF, Burakhanova EA, Dubinina IM (1982) Invertase in differentiated and dedifferentiated tissues of the sugar beet. Fiziol Rast (Mosc) 29:868–875

    CAS  Google Scholar 

  • Kursanov AL, Dubinina IM, Kudryavtseva LF, Burakhanova EA (1976) Some aspects of carbohydrate metabolism in cultures of dedifferentiated tissues of the sugar beet. Fiziol Rast (Mosc) 23:1119–1127

    CAS  Google Scholar 

  • Masuda H, Komiyama S, Sugawara S (1988a) Extraction of enzymes from cell walls of sugar beet cells grown in suspension culture. Plant Cell Physiol 29:623–627

    CAS  Google Scholar 

  • Masuda H, Takahashi T, Sugawara S (1988b) Acid and alkaline invertases in suspension cultures of sugar beet cells. Plant Physiol 86:312–317

    Article  PubMed  CAS  Google Scholar 

  • Mohammad AMS, Collin HA (1979) Growth and invertase activity of sugar beet callus. New Phytol 82:293–300

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nomura T, Kono Y, Akazawa T (1969) Enzymic mechanism of starch breakdown in germinating rice seeds. II. Scutellum as the site of sucrose synthesis. Plant Physiol 44:765–769

    CAS  Google Scholar 

  • Oldemeyer RK (1975) Introgression hybridization as a breeding method in Beta vulgaris. J Am Soc Sugar Beet Technol 18:269–273

    Article  Google Scholar 

  • Pavlinova OA (1971) Sucrose metabolism in the sugarbeet root. Fiziol Rast (Mosc) 18:722–730

    CAS  Google Scholar 

  • Pavlinova OA, Prasolova MF (1970) Sucrose-synthesizing enzymes of the sugar beet. Fiziol Rast (Mosc) 17:295–301

    CAS  Google Scholar 

  • Pavlinova OA, Prasolova MF (1972) Physiological role of sucrose synthetase in sugarbeet roots. Fiziol Rast (Mosc) 19:920–925

    CAS  Google Scholar 

  • Powers L (1957) Identification of genetically superior individuals and the prediction of genetic gains in sugar beet breeding programs. J Am Soc Sugar Beet Technol 9:408–432

    Article  Google Scholar 

  • Prasolova M, Mambetkulov S, Pavlinova OA, Pechanov VA (1976) Action of inorganic ions of sucrose synthetase of sugarbeet roots. Fiziol Rast (Mosc) 23:292–299

    CAS  Google Scholar 

  • Prentice N, Robbins GS (1976) Composition of invertases from germinated barley. Cereal Chem 53:874–880

    CAS  Google Scholar 

  • Quader H (1984) Tunicamycin prevents cellulose microfibril formation in Oocystis solitaria. Plant Physiol 75:534–538

    Article  PubMed  CAS  Google Scholar 

  • Ravi K, Hu C, Reddi PS, van Huystee RB (1986) Effect of tunicamycin on peroxidase release by cultured peanut suspension cells. J Exp Bot 37:1708–1715

    Article  CAS  Google Scholar 

  • Reisfeld RA, Lewis UJ, Williams DE (1962) Disc electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature (Lond) 195:281–283

    Article  CAS  Google Scholar 

  • Schwaiger H, Tanner W (1979) Effects of gibberellic acid and of tunicamycin on glycosyl-transferase activities and on α-amylase secretion in barley. J Biochem 102:375–381

    CAS  Google Scholar 

  • Stein M, Willenbrink J (1976) On accumulation of sucrose in the growing sugar beet. Z Pflanzenphysiol 79:310–322

    CAS  Google Scholar 

  • Swain RR, Dekker EE (1966) Seed germination studies II. Pathways for degradation in germinating pea seedlings. Biochim Biophys Acta 122:87–100

    Article  PubMed  CAS  Google Scholar 

  • Takahashi B, Hoshikawa K (1989) Beta L. In: Hotta M, Ogata K, Nitta A, Hosikawa K, Yanagi M, Yamasaki K (eds) Useful plants of the world. Heibonsha, Tokyo, pp 148–149

    Google Scholar 

  • Tkacz JS, Lampen JO (1975) Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem Biophys Res Commun 65:248–257

    Article  PubMed  CAS  Google Scholar 

  • Tsujisaka Y, Fukumoto J (1963) Studies on maltose splitting enzymes of moulds. I. Crystallization of transglucosidase of Aspergillus niger. Nippon Nogeikagaku Kaishi 37:668–672

    Article  CAS  Google Scholar 

  • Wood JG, Sarinana FO (1975) The staining of sciatic nerve glycoproteins on polyacrylamide gels with concanavalin A-peroxidase. Anal Biochem 69:320–322

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki Y, Konno H (1989a) α-Glucosidases of suspension-cultured sugar-beet cells. Phytochemistry 28:2583–2585

    Article  CAS  Google Scholar 

  • Yamasaki Y, Konno H (1989b) Effects of tunicamycin on α-glucosidase secretion from cultured sugar-beet suspension cells. Agric Biol Chem 53:2499–2500

    Article  CAS  Google Scholar 

  • Yamasaki Y, Konno H (1991a) Purification and properties of α-glucosidase from suspension-cultured sugar-beet cells. Phytochemistry 30:2861–2863

    Article  CAS  Google Scholar 

  • Yamasaki Y, Konno H (1991b) Extracellular α-glucosidase from suspension-cultured sugar-beet cells. Agric Biol Chem 55:1675–1676

    Article  CAS  Google Scholar 

  • Yamasaki Y, Suzuki Y (1974) Purification and properties of α-glucosidase from Bacillus cereus. Agric Biol Chem 38:443–454

    Article  CAS  Google Scholar 

  • Yamasaki Y, Suzuki Y (1979) Purification and properties of three forms of α-glucosidase from germinated green gram (Phaseolus vidissimus Ten.) Agric Biol Chem 43:481–489

    Article  CAS  Google Scholar 

  • Yamasaki Y, Suzuki Y (1980) Two forms of α-glucosidase from sugar-beet seeds. Planta 148:354–361

    Article  CAS  Google Scholar 

  • Yamasaki Y, Miyake T, Suzuki Y (1973) Properties of crystalline α-glucosidase from Mucor javanicus. Agric Biol Chem 37:251–259

    Article  CAS  Google Scholar 

  • Yamasaki Y, Suzuki Y, Ozawa J (1977) Three forms of α-glucosidase and a glucoamylase from Aspergillus awamori. Agric Biol Chem 41:2149–2161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yamasaki, Y., Konno, H. (1994). Beta vulgaris L. (Sugar Beet): In Vitro Culture and the Production of Glucosidases. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants VII. Biotechnology in Agriculture and Forestry, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30369-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-30369-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-30371-9

  • Online ISBN: 978-3-662-30369-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics