Advertisement

Althaea officinalis L. (Marshmallow): In Vitro Culture and the Production of Biologically Active Compounds

  • I. Ionkova
  • A. W. Alfermann
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 28)

Abstract

The genus Althaea belongs to the family Malvaceae and includes 12 species (Trease and Evans 1978), which are located mainly in Europe, with the exception of the Scandinavian countries, and the Near East (western and north Asia). They are cultivated mainly in Germany, France, Belgium, Spain, Italy, Hungary, and Russia, and have been introduced in North and South America (Uphof 1968).

Keywords

Suspension Culture Hairy Root High Pressure Liquid Chromatography Root Culture Uronic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aird ELH, Hamill JD, Rhodes MJC (1988) Cytogenetics analysis of hairy root cultures from a number of plant species transformed by Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 15(1): 47–58Google Scholar
  2. Alcaraz MJ, Moroney M, Hoult JRS (1989) Effects of hypolaetin-8-O-glucoside and its aglycone in in vitro test for anti-inflammatory agents. Planta Med 55:107Google Scholar
  3. Anderson JW, Beardall J (1991) Molecular activities of plant cells. Sci Publications, Oxford, pp 275–282Google Scholar
  4. Baker DB, Ray PM (1965a) Direct and indirect effects of auxin on cell wall synthesis in oat coleoptile tissue. Plant Physiol 40:345–352PubMedGoogle Scholar
  5. Baker DB, Ray PM (1965b) Relation between effects of auxin on cell wall synthesis and cell elongation. Plant Physiol 40:360–368PubMedGoogle Scholar
  6. Becker GE, Hui PA, Albersheim P (1964) Synthesis of extracellular polysaccharides by suspension of Acer pseudoplatanus cells. Plant Physiol 39:913–920PubMedGoogle Scholar
  7. Bergmann L, Grosse W, Koth P (1976) Influences of ammonium and nitrate on N-metabolism, malate accumulation and malic enzyme activity in suspension cultures of Nicotiana tabacum. Z Pflanzenphysiol 80:60–64Google Scholar
  8. Berlin J (1988) Formation of secondary metabolites in cultured plant cell and its impact on pharmacy. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, pp 37–59Google Scholar
  9. Blaschek W, Franz G (1986) A convenient method for the quantitative determination of mucilage polysaccharides in Althaea Radix. Planta Med 52:537Google Scholar
  10. Bonner J (1961) On the mechanics of auxin-induced growth, In: Iowa State (ed) Plant growth regulators. University Press, Ames, pp 307–326Google Scholar
  11. Burke D, Kaufman P, McNeil M, Albersheim P (1974) The structure of plant cell walls. Plant Physiol 54:109–115PubMedGoogle Scholar
  12. Butcher DN (1977) Secondary products in tissue culture. In: Reinert J, Bajaj YPS (eds) Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer Berlin Heidelberg New York, pp 668-716Google Scholar
  13. Capek P, Toman R, Kardosova A, Rosik J (1983) Polysaccharides from the roots of the marshmallow (Althaea officinalis L.): structure of an arabinan. Carbohydr Res 117:133–140Google Scholar
  14. Capek P, Toman R, Rosik J, Kardosova A (1984) Polysaccharides from the roots of Althaea officinalis L.: structural features of D-glucans. Collect Czech Chem Commun 49:2674–2679Google Scholar
  15. Capek P, Rosik J, Kardosova A, Toman R (1987) Polysaccharides from the roots of the marshmallow (Althaea officinalis L., var. Robusta): Structural features of an acidic polysaccharide. Carbohydr Res 164:443–452Google Scholar
  16. Cravent GH, Mott RL, Steward FC (1972) Solute accumulation in plant cells. IV. Effects of ammonium ions on growth and solute content. Ann Bot (Lond) 36:897–901Google Scholar
  17. Delia Loggia R, Del Negro P, Bianchi P, Romussi G, Tubaro A (1989) Topical anti-inflammatory activity of some flavonoids from Quereus ilex leaves. Planta Med 55:109Google Scholar
  18. Dzido TH, Soczewinski E, Gudej J (1991) Computer aided optimization of high-performance liquid Chromatographic analysis of flavonoids from some species of the genus Althaea. J Chromatogr 550:71–76Google Scholar
  19. Ebert K (1982) Arznei-und Gewürzpflanzen. Wissenschaftliche Verlaggesellschaft, Stuttgart, pp 78–79Google Scholar
  20. Evans WC (1989) Pharmacognosy, 13th edn. Baillière Tindall, London, 355 ppGoogle Scholar
  21. Flores HE, Filner P (1985) Metabolie relationships of putrescine, GABA and alkaloids in cell and root cultures of Solanaceae. In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism in plant cell cultures. Springer, Berlin Heidelberg New York, pp 174–185Google Scholar
  22. Fowler MW (1985) Plant cell culture — future perspectives, In: Neumann KH, Barz W, Reinhard E (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York, pp 362–368Google Scholar
  23. Franz G (1966) Die Schleimpolysaccharide von Althaea officinalis und Malva silvestris. Planta Med 14:90–110Google Scholar
  24. Franz G (1989) Polysaccharides in pharmacy: current applications and future concept. Planta Med 55:493–497PubMedGoogle Scholar
  25. Franz G (1991) Polysaccharides. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Von Friedrichs O (1919) Über einige Inhaltsstoffe der Altheewurzel. Arch Pharm (Weinheim) 257:288–298Google Scholar
  27. Frohne D, Jensen U (1979) Systematik des Pflanzenreichs. Gustav Fischer, Stuttgart, 138 ppGoogle Scholar
  28. Gamborg OL (1967) Aromatic metabolism in plants V. The biosynthesis of chlorogenic acid and lignin in potato cell cultures. Can J Biochem 45:1451–1457Google Scholar
  29. Gudej J (1989) Determination of flavonoids in leaves, flowers and roots of Althaea officinalis L. Farm Pol 46:153–155Google Scholar
  30. Gudej J (1991) Flavonoids, phenolic acids and coumarins from the roots of Althaea officinalis L. Planta Med 57:284–285PubMedGoogle Scholar
  31. Gudej J, Bieganowska ML (1990a) Chromatographic investigations of flavonoid compounds in the leaves and flowers of some species of the genus Althaea. Chromatographia 30(5/6): 333–336Google Scholar
  32. Gudej J, Bieganowska ML (1990b) Chromatographic investigation of phenolic acids and coumarins in the leaves and flowers of some species of the genus Althaea. J Liq Chromatogr 13(20): 4081–4092Google Scholar
  33. Gudej J, Dzido TH (1991) Quantitative determination of flavonoid glycosides in leaves and flowers from some species of Althaea genus using HPLC Technique. Acta Pol Pharm — Drug Res 48(3–4): 59–62Google Scholar
  34. Guhman H (1924) Variation in the root system of the common everlast (Gnaphalium polycephalum). Ohio J Sci 24:199–208Google Scholar
  35. Hahlbrock K, Wellmann E (1970) Light-induced flavone biosynthesis and activity of phenylalanine-ammonia-lyase and UDP-apiose synthetase in cell suspension cultures of Petroselinum hortense. Planta Med 94:236–239Google Scholar
  36. Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ (1987) New routes to plant secondary products. Bio/Technology 5:800–804Google Scholar
  37. Hartwich C (1891) Über die Schleimzellen von Althaea officinalis L. Pharm Zentralhalle: 586-588Google Scholar
  38. Hausel R (1991) Phytopharmaka. Springer, Berlin Heidelberg New York, 100 ppGoogle Scholar
  39. Hausel R, Haas H (1984) Therapie mit Phytopharmaka. Springer, Berlin Heidelberg New York, pp 102–103Google Scholar
  40. Hegnauer R (1969) Chemotaxonomie der Pflanzen Vol 5. Birkhäuser, Basel pp 29–46Google Scholar
  41. Henry M, Edy AM, Desmarest P, Manoir J (1991) Glycyrrhiza glabra (licorice): Cell culture, regeneration, and the production of glycyrrhizin, In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 15. Medicinal and aromatic plants III. Springer, Berlin Heidelberg New York, pp 270–282Google Scholar
  42. Holden PR, Holden MA, Yeoman MM (1988) Variation in the secondary metabolism of cultured plant cells. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in culture. Cambridge University Press, Cambridge, pp 15–29Google Scholar
  43. Holzl J, Baucher E (1965) Bau und Eigenschaften der organischen Naturstoffe. Springer, Berlin Heidelberg New YorkGoogle Scholar
  44. Hoppe AH (1975). Drogenkunde Band 1. de Gruyter, Berlin, pp 62–64Google Scholar
  45. Hunault G (1984) In vitro culture of fennel tissues (Foeniculum vulgare Miller) from cell suspension to mature plant. Sci Hortic 22:55–65Google Scholar
  46. Ilieva St, Peneva C, Koleva M, Ninov St, Topalova V (1984) Althaea officinalis L., var. Russalka. Bulg. Autorship Cert. N 65 404/3.5.1984Google Scholar
  47. Ionkova I (1990) Transformed plant cultures — sources of secondary natural products. Pharmacy (Sofia) 4:61–66Google Scholar
  48. Ionkova I (1991) Production of saponins by conventional and transformed root cultures of Astragalus hamosus (Fabaceae). Probl Pharm Pharmacol (Sofia) V: 31–35Google Scholar
  49. Ionkova I (1992a) Alkaloid production of Hyoscyamus reticulatus plant and transformed root cultures. Biotechnology (Sofia) 2:50–52Google Scholar
  50. Ionkova I (1992b) Potential of transformed root cultures from Hyoscyamus aureus for the biosynthesis of tropane alkaloids. Biotechnology (Sofia) 3:41–43Google Scholar
  51. Ionkova I (1992c) Alternative sources of biological active substances from Althaea officinalis L., var. Russalka. CR Acad Bulg Sci 9:137–141Google Scholar
  52. Ionkova I (1992d) Polysaccharides from Althaea officinalis L., var. Russalka — intact plant and suspension cultures. Biotechnology 4 (in press)Google Scholar
  53. Ionkova I, Witte L, Alfermann AW (1989) Production of alkaloids by transformed root cultures of Datura innoxia. Planta Med 55:229–230Google Scholar
  54. Ionkova I, Stefanova-Gateva B, Zvetanova V (1990a) Biosynthese de substance medicinales de plantes medicinales par technologie in vitro. In: Tacher T (ed) XXIe Semaine Medicinale Balkanique, 2–5 Sept, Varna, Bulgaria. Sim, Sofia, 142Google Scholar
  55. Ionkova I, Zvetanova V, Alfermann AW (1990b) Production of tropane alkaloids by hairy root cultures of Hyoscyamus albus L. Solanaceae cultivated in vitro. Pharmacy (Sofia) XL, 5:13–17Google Scholar
  56. Ionkova I, Ninov St, Kolev D, Alfermann AW (1991) Secondary constituents of in vitro cell and transformed root cultures of Althaea officinalis L., var. Russalka, Malvaceae. Planta Med 57:A41–42Google Scholar
  57. Jaretzky R, Ulbrich H (1934) Die intraplasmatischen Vorgänge bei der Schleimbildung in den Samen von Althaea officinalis L. Arch Pharm (Weinheim) 272:796–811Google Scholar
  58. Kamada H, Okamura N, Satake M, Harada H, Shimomura K (1986) Alkaloid production by hairy root cultures in Atropa belladonna. Plant Cell Rep 5:239–242Google Scholar
  59. Kardosova A, Rosik J, Toman R, Capek P (1983) Glucan isolated from leaves of Althaea officinalis L. Collect Czech Chem Commun 48:2082–2087Google Scholar
  60. Kato K, Wattanabe F, Eda S (1977) Interior chains of glucuronomannan from extracellular polysaccharides of suspension-cultured tobacco cells. Agric Biol Chem 41:539–543Google Scholar
  61. Kinnersley AM, Dougall DK (1981) Correlation between the nicotine content of tobacco plants and callus cultures. Planta 149:205–206Google Scholar
  62. Kohler FE (1887 reprint 1990) Medizinal-Pflanzen Atlas, repr “Libri rari”, Band 2. Eugen Kohler, Hannover, pp 10-13Google Scholar
  63. Koleva M, Kolev D (1985) Polysaccharides. Nauka, SofiaGoogle Scholar
  64. Koleva M, Ninov S, Daskalov V, Ilieva S (1986) Polyphenol compounds from the leaves of Althaea officinalis L., var. Russalka. Pharmacy (Sofia) 3:15Google Scholar
  65. Koleva M, Ninov S, Siegel U, Zinsmeister H, Kolev D (1990) Isolation of polysaccharides from the roots of Althaea officinalis, var. Russalka CR Acad Bulg Sci 43(N8): 55–56Google Scholar
  66. Kresanek J, Krejca J (1981) Les plantes medicinales. Slovart, Bratislava, Cercle d’Art, Paris, pp 27, 34, 46Google Scholar
  67. Lindsey K, Yeoman MM (1983) The relationship between growth rate, differentiation and alkaloid accumulation in cell cultures. J Exp Bot 34:1055–1065Google Scholar
  68. Madaus A (1989) Analytische Untersuchung der wertbestimmenden hochmolekularen Schleimpol-ysaccharide von Althaea officinalis L. Dissertation, Regensburg Univ, GermanyGoogle Scholar
  69. Mantell SH, Smith H (1983) Cultural factors that influence secondary metabolite accumulations in plant cell and tissue cultures, In: Mantell SH, Smith H (eds) Plant biotechnology. Cambridge University Press, Cambridge, pp 75–108Google Scholar
  70. Marinova S, Stoichkov J, Koleva M, Ninov S (1985) Plant-immunostimulant. Bulg authorship cert N 38651, A61 K35/78Google Scholar
  71. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497Google Scholar
  72. Nakamura T (1974) Production of agar. Japan Patent (Kokai) 74-101561Google Scholar
  73. Neuman D, Krauss G, Heike M, Corder D (1983) Indole alkaloid formation and storage in cell suspension cultures of Catharanthus roseus. Planta med 48:20–23Google Scholar
  74. Ninov S, Ionkova I, Kolev D (1992) Constituents from roots of Althaea officinalis L., var. Russalka, Malvaceae. Fitoterapia (It) LXIII-N5: pp 474Google Scholar
  75. Nishitani K, Shibaoka H, Masuda Y (1979) Growth and cell wall changes in azuki bean epocotyls II. Changes in wall polysaccharides during auxin-induced growth of excised segments. Plant Cell Physiol 20:463–472Google Scholar
  76. Olson AC, Evans J, Frederick DP, Jansen E (1969) Plant suspension culture media macromolecules — pectic substances, protein, and peroxidase. Plant Physiol 44:1594–1600PubMedGoogle Scholar
  77. Ooms G, Karp A, Burrell M, Twell D, Roberts J (1985) Genetic modification of potato development using RiT-DNA. Theor Appl Genet 70:440–446Google Scholar
  78. Pahlow M (1979) Das große Buch der Heilpflanzen. Crafe und Unser, München, pp 112–115Google Scholar
  79. Parr A, Hamil JD (1987) Relationship between biosynthetic capacities of Agrobacterium rhizogenes-transformed hairy roots and intact uninfected plants of Nicotiana. Phytochemistry 26:3241–3245Google Scholar
  80. Payne G, Bringi V, Prince C, Shuler M (1992) Questions and strategies for productivity improvements. In: Plant cell and tissue culture in liquid systems. Oxford University Press, New York, pp 329–335Google Scholar
  81. Pythoud F, Sinkar P, Nester E, Gordon M (1987) Increased virulence of Agrobacterium rhizogenes conferred by the vir region of pTiBo 542: application to genetic engineering of poplar. Biotechnology 5:1323–1327Google Scholar
  82. Reuter HD, Deininger R, Schulz V (1988) Phytotherapie. Hippokrates, Stuttgart, 206 ppGoogle Scholar
  83. Rhodes MJC, Robins RJ, Hamill JD, Parr AJ, Waltton NJ (1987) Secondary product formation, using Agrobacterium rhizogenes — transformed cultures. IAPTC Newslett 53:2–15Google Scholar
  84. Roberts MF (1988) Medicinal products through plant biotechnology. In: Robins RJ, Rhodes MJC (eds) Manipulating secondary metabolism in cultures. Cambridge University Press, Cambridge, pp 201–216Google Scholar
  85. Rose D, Martin S (1975) Effect of ammonium on growth of plant cells (Ipomoea sp.) in suspension cultures. Can J Bot 53:1942–1949Google Scholar
  86. Rubery PH, Northcote DH (1970) The effect of auxin (2,4-dichlorophenoxyacetic acid) on the cultured sycamore cell wall polysaccharides in cultured sycamore cells. Biochim Biophys Acta 222:95–108PubMedGoogle Scholar
  87. Salikow SA, Ismailov ZF, Rakhimov D, Gudynshina O (1978) Some biologically speciality and dynamic of Althaea rosea L. polysaccharides. Rastit Resur 14: 375–378Google Scholar
  88. Sasaki T, Kainuma K (1982) Regulation of starch synthesis and external polysaccharide synthesis by gibberllic acid in cultured sweet potato cells. In: Fujiwara A (ed) Plant tissue culture 1982, Maruzen, Tokyo, pp 255–256Google Scholar
  89. Sign MW, Flores HE (1990) The biosynthetic potential of plant roots. BioEssay, 12(N1):7–13Google Scholar
  90. Staba EJ (1985) Milestones in plant tissue culture systems for production of secondary products. J Nat Prod 48:203–209Google Scholar
  91. Stachel SE, Messeus E, Van Montagu M, Zambryski P (1986) Identification of signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tunefaciens. Nature 318:624–629Google Scholar
  92. Stoddart RW, Barrett AJ, Northcote DH (1967) Pectic polysaccharides of growing plant tissues. Biochem J 102:194–207PubMedGoogle Scholar
  93. Takashi Isa (1991) Mucilage production by hairy root cultures of Astragalus gummifer, In: Komanine A (ed) Plant cell culture in Japan CMC pp 99-103Google Scholar
  94. Thorpe TA, Meier D (1972) Starch metabolism, respiration and shoot formation in tobacco callus cultures. Physiol Plant 27:365–368Google Scholar
  95. Tomodo M, Kaneko S, Ebashi M, Nagakura T (1977) Plant mucilages XVI. Isolation and characterization of a mucous polysaccharide “Althaea-mucilage-O”. Chem Pharm Bull 25(6): 1357–1362Google Scholar
  96. Tomoda M, Saton N, Shimada K (1980) Plant mucilages XXIV. The structural features of “Althaea-mucilage-O”, a representative mucous polysaccharide from the roots of Althaea officinalis. Chem Pharm Bull 28(3): 824–830Google Scholar
  97. Tomoda M, Shimizu N, Suzuki H, Takasu T (1981) Plant mucilages XXVIII. Isolation and characterisation of a mucilage “Althaea-mucilage OL” from the leaves of Althaea officinalis L. Chem Pharm Bull 29:2277–2282Google Scholar
  98. Tomoda M, Shimada K, Shimizu N (1983) Plant mucilages, XXXII. A representative mucilage, “Althaea-mucilage-O”, from the roots of Althaea rosea. Chem Pharm Bull 31(8): 2677–2684Google Scholar
  99. Tomoda M, Shimizu M, Oshima Y, Takahashi M, Murakami M, Hikino H (1986) Hypoglycemic activity of twenty plant mucilages and three modified products. Planta Med 53:8–12Google Scholar
  100. Tomoda M, Shimizu N, Gouda R, Kanari M, Yamada H, Hikino H (1990) Anti-complementary and hypoglycemic activities of the glycans from the seeds of Malva vericulata. Planta Med 56:169–170Google Scholar
  101. Trease GE, Evans WC (1978) Pharmacognosy. Ballière Tindall, London, pp 116–117Google Scholar
  102. Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Weeb DA (eds) Flora Europea. Cambridge Univ Press, Cambridge, 253 ppGoogle Scholar
  103. Ulbrich B, Osthoff H, Wiesner W (1988) Aspect of screening plant cell cultures for new pharmacologically active compounds. In: Pais MSM et al. (eds) Plant cell biotechnology. Springer, Berlin Heidelberg New York, pp 461–473Google Scholar
  104. Uphof JCTH (1968) Dictionary of economic plants. Cramer Lehre, pp 28-29Google Scholar
  105. Vigneau C (1988) Plantes médicinales. Masson, Paris, 112 ppGoogle Scholar
  106. Villar A, Gasco MA, Alcaraz MJ (1984) Anti-inflamatory and anti-ulcer proprieties of hypolaetin-8-glucoside, a novel plant flavonoid. J Pharm Pharmacol 36:820–823PubMedGoogle Scholar
  107. Villar A, Gasco MA, Alcaraz (1987) Some aspects of the inhibitory activity of hypolaetin-8-glucoside in acute inflammation. J Pharm Pharmacol 39:502–507PubMedGoogle Scholar
  108. Wagner H, Proksch A, Riess-Mauer I, Vollmar A, Odenthal S, Stuppner H, Jurcic H, Le Turdu Mm, Fang JN (1985) Immunostimulierend wirkende Polysaccharide (Heteroglykane) aus höheren Pflanzen. Arzneim Forsch/Drug Res 35(II) N7:1069–1075Google Scholar
  109. Wagner H, Stuppner H, Schafer W, Zenk M (1988) Immunologically active polysaccharides of Echinaceae purpurea cell cultures. Phytochemistry 27(N1): 119–126Google Scholar
  110. Widmaier W (1988) Pflanzenheikunde, Band 2. WBV, Biologisch-Medizinische Verlaggesellschaft, Schorndorf, pp 48–51Google Scholar
  111. Wilder BM, Altersheim P (1973) The structure of plant cell walls, IV. A structural comparison of the wall hemicellulose of cell suspension cultures of sycamore (Acer pseudoplatanus) and red kideny bean (Phaseolus vulgaris). Plant Physiol 51:889–893PubMedGoogle Scholar
  112. Wydra K, Rudolph K (1992) Analysis of toxic extracellular polysaccharides. In: Linskens H, Jackson J (eds) Plant toxin analysis. Springer Berlin Heidelberg New York, pp 113-183Google Scholar
  113. Zenk MH, Deus B (1982) Natural products synthesis by plant cell cultures. In: Fujiwara A (ed) Plant tissue culture 1982, Maruzen, Tokyo, pp 391–394Google Scholar
  114. Zenk MH, El-shagi H, Arens H, Stockigt J, Weiler E, Deus B (1977) Formation of the indole alkaloids serpentine and ajmaline in cell suspension culture of Catharanthus roseus. In: Barz W, Reinhard E, Zenk HM (eds) Plant tissue culture and its biotechnological application. Springer, Berlin Heidelberg New York, pp 27–43Google Scholar
  115. Zorrefuieta A, Ugalde RA (1986) Formation in Rhizobium and Agrobacterium spp. of a 235-kilodalton protein intermediate in β-D-(l–2)-glucan synthesis. J Bacteriol 167(3): (3) 947–952Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • I. Ionkova
    • 1
  • A. W. Alfermann
    • 2
  1. 1.Faculty of PharmacyMedical AcademySofiaBulgaria
  2. 2.Institut für Entwicklungs- und Molekularbiologie der PflanzenHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations