Skip to main content

Dianthus Species (Carnation): In Vitro Culture and the Biosynthesis of Dianthalexin and Other Secondary Metabolites

  • Chapter
Medicinal and Aromatic Plants VII

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 28))

Abstract

The genus Dianthus comprises a relatively large group of some 300 species, which have attracted attention because of spectacular flower color combinations ranging from white to yellow, red, and deep purple (Helm 1975; Rechinger 1979). Particular morphological traits and pigmentation distinguish Dianthus from other genera within the family Caryophyllaceae, although the evolutionary phyllogenetic background and the subdivision of the genus have remained controversial (Rechinger 1979). The genus was thought to have originated in the Mediterranean hillsites, but is now believed to have inherited traits from various nontropical locations of Europe and Asia (Rechinger 1979). Some species spread along the southeast African continent into South Africa and even into the Far East, which is recognized in their taxonomic designation, D. chinensis being one example. Dianthus generally prefers moderately dry and warm conditions, high light intensities, and mineral-rich soils (Helm 1975: Rechinger 1979), but a few species such as D. alpinus and D. glacialis have managed to colonize rock soils in the Austrian and Italian Alps at 2000 to 2800 m altitude. Crosses between species may occur spontaneously, and numerous hybrids are known to exist in their natural habitat as well as under cultivation (Helm 1975; Rechinger 1979). The plants show perennial growth, but there is a trend towards annual cultivars in breeding for ornamental varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avelange M-H, Thiéry JM, Sarrey F, Gans P, Rébeillé F (1991) Mass-spectrometric determination of O2 and CO2 gas exchange in illuminated higher-plant cells. Planta 183:150–157

    CAS  Google Scholar 

  • Azuma H, Banno K, Yoshimura T (1976) Pharmacological properties of N-(3′,4′-dimethoxycinnamoyl)anthranilic acid (N-5′), a new anti-atropic agent. BrJ Pharmacol 58:483–488

    Article  CAS  Google Scholar 

  • Baayen RP, Niemann GJ (1989) Correlations between accumulation of dianthramides, dianthalexin and unknown compounds, and partial resistance to Fusarium oxysporum f. sp. dianthi in 11 carnation cultivars. J Phytopathol 126:281–292

    Article  CAS  Google Scholar 

  • Baayen RP, van der Plas CH (1992) Localization ability, latent period and wilting rate in eleven carnation cultivars with partial resistance to fusarium wilt. Euphytica 59:165–174

    Article  Google Scholar 

  • Berg D, Plempel M (eds) (1988) Sterol biosynthesis inhibitors: pharmaceutical and agrochemical aspects. Ellis Horwood, Chichester

    Google Scholar 

  • Brown JH, Chambers JA, Thompson JE (1991a) Acyl chain and head group regulation of phospholipid catabolism in senescing carnation flowers. Plant Physiol 95:909–916

    Article  PubMed  CAS  Google Scholar 

  • Brown JH, Chambers JA, Thompson JE (1991b) Distinguishable patterns of phospholipid susceptibility to catabolism in senescing carnation petals. Phytochemistry 30:2537–2543

    Article  CAS  Google Scholar 

  • Buiatti M, Scala A, Bettini P, Nascari G, Morpurgo R, Bogani P, Pellegrini G, Gimelli F, Venturo R (1985) Correlations between in vivo resistance to Fusarium and in vitro response to fungal elicitors and toxic substances in carnation. Theor Appl Genet 70:42–47

    Article  CAS  Google Scholar 

  • Buiatti M, Marcheschi G, Venturo R, Bettini P, Bogani P, Morpurgo R, Nachmias B, Pellegrini MG (1987) In vitro response to Fusarium elicitor and toxic substances in crosses between resistant and susceptible carnation cultivars Plant Breed 98:346–348

    Google Scholar 

  • Collins FW, McLachlan DC, Blackwell BA (1991) Oat phenolics: avenalumic acids, a new group of bound phenolic acids from oat groats and hulls. Cereal Chem 68: 184–189

    CAS  Google Scholar 

  • Cook EL, van Staden J (1988) The carnation as a model for hormonal studies in flower senescence. Plant Physiol Biochem 26:793–807

    CAS  Google Scholar 

  • Cordell GA, Lyon RL, Fong HHS, Benoit PS, Farnsworth NR (1977) Biological and phytochemical investigations of Dianthus barbatus cv. China Doll (Caryophyllaceae). Lloydia 40:361–363

    PubMed  CAS  Google Scholar 

  • Dereuddre J, Fabre J, Bassaglia C (1988) Resistance to freezing in liquid nitrogen of carnation (Dianthus caryophyllus L. var Eolo) apical and axillary shoot tips excised from different aged in vitro plantlets. Plant Cell Rep 7:170–173

    Article  Google Scholar 

  • De Vetten NC, Huber DJ, Gross KC (1991) Endoglycanase-catalyzed degradation of hemicellulose during development of carnation (Dianthus caryophyllus L.) petals. Plant Physiol 95:853–860

    Article  PubMed  Google Scholar 

  • Droillard M-J, Paulin A (1990) Isozymes of Superoxide dismutase in mitochondria and peroxysomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol 94:1187–1192

    Article  PubMed  CAS  Google Scholar 

  • Elad Y, Volpin H (1991) Heat treatment for the control of rose and carnation gray mold (Botrytis cinerea). Plant Pathol 40:278–286

    Article  Google Scholar 

  • Engelmann-Sylvestre I, Bureau J-M, Trémolières A, Paulin A (1989) Changes in membrane phospholipids and galactolipids during senescence of cut carnation. Connection with ethylene rise. Plant Physiol Biochem 27:931–937

    CAS  Google Scholar 

  • Errede LA, McBrady JJ, Tiers GVD (1980) Acylanthranils. 10. Influence of hydrogen bonding on hydrolysis of acylanthranil in organic solvents. J Org Chem 45:3868–3875

    Article  CAS  Google Scholar 

  • Forkmann G, Dangelmayr B (1980) Genetic control of chalcone isomerase activity in flowers of Dianthus caryophyllus. Biochem Genet 18:519–527

    Article  PubMed  CAS  Google Scholar 

  • Freier K, Krebs B, Junge H, Bochow H, Huber J, Hirte W (1990) Dose-effect-relationship and population dynamics for the antagonist Bacillus subtilis used for biological control of Fusarium oxysporum f. sp. dianthi. Zentralbl Mikrobiol 145:563–578

    Google Scholar 

  • Gay L (1985) Phytoalexin formation in cell cultures of Dianthus caryophyllus treated by an extract from the culture medium of Phytophthora parasitica. Physiol Plant Pathol 26:143–150

    Article  CAS  Google Scholar 

  • Geissman TA, Mehlquist GAL (1947) Inheritance in the carnation, Dianthus caryophyllus. IV. The chemistry of flower color variation, I. Genetics 32:410–433

    CAS  Google Scholar 

  • Geissman TA, Hinreiner EF, Jorgensen EC (1956) Inheritance in the carnation, Dianthus caryophyllus. V. The chemistry of flower color variation, II. Genetics 41:93–115

    PubMed  CAS  Google Scholar 

  • Hain R, Reif H-J, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stöcker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361:153–156

    Article  PubMed  CAS  Google Scholar 

  • Hanley KM, Meir S, Bramlage WJ (1989) Activity of ageing carnation flower parts and the effects of l-(malonylamino)cyclopropane-l-carboxylic acid-induced ethylene. Plant Physiol 91:1126–1130

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1966) Comparative biochemistry of flavonoids-I. Distribution of chalcone and aurone pigments in plants. Phytochemistry 5:111–115

    Article  CAS  Google Scholar 

  • Hauteville M, Ponchet M. Ricci P, Favre-Bonvin J (1988) Novel synthesis of dianthalexin (phytoalexin) analogues preparation. Heterocyclic Chem 25:715–718

    Article  CAS  Google Scholar 

  • Hegnauer R (ed) (1964) Chemotaxonomie der Pflanzen, vol 3. Birkhäuser, Basel

    Google Scholar 

  • Hegnauer R (ed) (1989) Chemotaxonomie der Pflanzen, vol 8. Birkhäuser, Basel

    Google Scholar 

  • Helm J (1975) Unterfamilie Caryophylloideae (Silenoideae). In: Urania Pflanzenreich, Höhere Pflanzen I. Urania, Leipzig, pp 278–281

    Google Scholar 

  • Henskens H, Somhorst D, Woltering E (1992) Molecular cloning and tissue expression of ACC synthase mRNAs in carnation flowers. Physiol Plant 85: A61 (Abstr 344)

    Article  Google Scholar 

  • Hulett FM, DeMoss JA (1975) Subunit structure of anthranilate synthetase from Neurospora crassa. J Biol Chem 250:6648–6652

    PubMed  CAS  Google Scholar 

  • Isaji M, Nakajoh M, Naito J (1987) Selective inhibition of collagen accumulation by N-(3,4-dimethoxycinnamoyl)anthranilic acid (N-5′) in granulation tissue. Biochem Pharmacol 36:469–474

    Article  PubMed  CAS  Google Scholar 

  • Kakegawa H, Mitsuo N, Matsumoto H, Satoh T, Akagi M, Tasaka K (1985) Hyaluronidaseinhibitory and anti-allergic activities of the photo-irradiated products of Tranilast, Chem Pharm Bull 33:3738–3744

    Article  PubMed  CAS  Google Scholar 

  • Kevers C, Gaspar Th (1985) Soluble, membrane and wall peroxidases, phenylalanine ammonialyase, and lignin changes in relation to vitrification of carnation tissues cultured in vitro. J Plant Physiol 118:41–48

    Article  CAS  Google Scholar 

  • Koda A, Kurashina Y, Nakazawa M (1985) The inhibition mechanism of histamine release by N-(3,4-dimethoxycinnamoyl)anthranilic acid. Int Arch Allergy Appl Immunol 77:244–245

    Article  PubMed  CAS  Google Scholar 

  • Krátká J (1989) Changes of hydroxyproline content in the cell wall of carnation after inoculation with Fusarium oxysporum f. sp. dianthi. Zentralbl Mikrobiol 144:485–488

    Google Scholar 

  • Larsen PB. Woodson WR (1991) Cloning and nucleotide sequence of a S-adenosyl-methionine synthetase cDNA from carnation. Plant Physiol 96:997–999

    Article  PubMed  CAS  Google Scholar 

  • Leshem B, Werker E, Shalev DP (1988) The effect of cytokinins on vitrification in melon and carnation. Ann Bot 62:271–276

    CAS  Google Scholar 

  • Lu C-Y, Nugent G, Wardley-Richardson T, Chandler SF, Young R, Dalling MJ (1991) Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Bio/Technology 9: 864–868

    Article  CAS  Google Scholar 

  • Manicomb BQ, Bar-Joseph M, Kotze JM, Becker MM (1990) A restriction fragment length polymorphism probe relating vegetative compatibility groups and pathogenicity in Fusarium oxysporum f. sp. dianthi. Phytopathology 80:336–339

    Article  Google Scholar 

  • Matern U, Strobel G, Shepard J (1978) Reaction to phytotoxins in a potato population derived from mesophyll protoplasts. Proc Natl Acad Sci USA 75:4935–4939

    Article  PubMed  CAS  Google Scholar 

  • Mayama S, Tani T, Ueno T, Hirabayashi K, Nakashima T, Fukami H, Mizuno Y, Irie H (1981) Isolation and structure elucidation of genuine oat phytoalexin, avenalumin I. Tetrahedron Lett 22:2103–2106

    Article  CAS  Google Scholar 

  • Mehlquist GAL, Geissman TA (1947) Inheritance in the carnation (Dianthus caryophyllus) III, Inheritance of flower color. Ann M Bot Gard 34:39–75

    Article  Google Scholar 

  • Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678

    Article  PubMed  CAS  Google Scholar 

  • Mii M, Buiatti M, Gimeli F (1990) Carnation. In: Ammirato PV, Evans DA, Sharp WR, Bajaj YPS (eds) Handbook of plant cell culture, vol 5. Ornamental species. McGraw-Hill, New York, pp 284–318

    Google Scholar 

  • Miller RM, Kaul V, Hutchinson JF, Maheswaran G, Richards D (1991a) Shoot regeneration from fragmented flower buds of carnation (Dianthus caryophyllus). Ann Bot 68:563–568

    Google Scholar 

  • Miller RM, Kaul V, Hutchinson JF, Richards D (1991b): Adventitious shoot regeneration in carnation (Dianthus caryophyllus) from axillary bud explants. Ann Bot 67:35–42

    CAS  Google Scholar 

  • Ming X-T, Jing-Jiu MI, Nai-sui P, Zhang-Liang C (1990) Transient expression of CAT and GUS genes in protoplasts isolated from rice and corn. Acta Bot Sin 32:443–447

    Google Scholar 

  • Nakano M, Mii M (1993) Interspecific somatic hybridization in Dianthus: selection of hybrids by the use of iodoacetamide inactivation and regeneration ability. Plant Sci 88:203–208

    Article  CAS  Google Scholar 

  • Niemann GJ (1992) The mechanism of resistance of carnation to wilt diseases. Acta Hortic 307:29–36

    Google Scholar 

  • Niemann GJ (1993) The anthranilamide phytoalexins of the Caryophyllaceae and related compounds — Phytochemistry 34:319–328

    CAS  Google Scholar 

  • Niemann GJ, Liem J, Pureveen JBM, Boon JJ (1991a) The amide-type phytoalexin activity of carnation extracts is partly due to an artifact. Phytochemistry 30:3923–3927

    Article  CAS  Google Scholar 

  • Niemann GJ, van der Kerk A, Niessen WMA, Versluis K (1991b) Free and cell wall-bound phenolics and other constituents from healthy and fungus-infected carnation (Dianthus caryophyllus L.) stems. Physiol Mol Plant Pathol 38:417–432

    Article  CAS  Google Scholar 

  • Niemann GJ, Liem J, van der Kerk A, van Hoof A, Niessen WMA (1992) Phytoalexins, benzoxazinones, N-aroylanthranilates and N-aroylanilines from Fusarium-infected carnation stems. Phytochemistry 31:3761–3767

    Article  CAS  Google Scholar 

  • Niyogi KK, Fink GR (1992) Two anthranilate synthase genes in Arabidopsis: Defense-related regulation of the tryptophan pathway. Plant Cell 4:721–733

    PubMed  CAS  Google Scholar 

  • Nugent G, Wardley-Richardson T, Lu C-Y (1991) Plant regeneration from stem and petal of carnation (Dianthus caryophyllus L.). Plant Cell Rep 10:477–480

    Article  CAS  Google Scholar 

  • Ostermann W-D, Meyer U, Leiser R-M (1987) Induction of plant virus resistance: 2. Leaf extract from carnation plants (Dianthus caryophyllus L.) as inducers of resistance. Zentralbl Mikrobiol 142:229–238

    Google Scholar 

  • Otsuka H, Hirai Y, Nagao T, Yamasaki K (1988) Anti-inflammatory activity of benzoxazinoids from roots of Coix lachryma-jobi var. Ma-Yuen. J Nat Prod 51:74–79

    Article  PubMed  CAS  Google Scholar 

  • Palet A, Ribas-Carbó M, Argilés JM, Azcón-Bieto J (1991) Short-term effects of carbon dioxide on carnation callus cell respiration. Plant Physiol 96:467–472

    Article  PubMed  CAS  Google Scholar 

  • Park KY, Drory A, Woodson WR (1992) Molecular cloning of an 1-aminocyclopropane-l-carboxylate synthase from senescing carnation flower petals. Plant Mol Biol 18:377–386

    Article  PubMed  CAS  Google Scholar 

  • Pereau-Leroy P (1974) Genetic interaction between the tissues of carnation petals as periclinal chimeras. Radiat Bot 14:109–116

    Article  Google Scholar 

  • Ponchet M, Favre-Bonvin J, Hauteville M, Ricci P (1988a) Dianthramides (N-benzoyl and N-paracoumaroylanthranilic acid derivatives) from elicited tissues of Dianthus caryophyllus. Phytochemistry 27:725–730

    Article  CAS  Google Scholar 

  • Ponchet M, Ricci P, Hauteville M, Auge G (1988b) Activé antifongique in vitro de la dianthramide A. CR Acad Sci Paris Ser III 306:173–178

    CAS  Google Scholar 

  • Postma J, Rattink H (1992) Biological control of fusarium wilt of carnation with a nonpathogenic isolate of Fusarium oxysporum. Can J Bot 70:1199–1205

    Article  Google Scholar 

  • Poulson C, Bongaerts RJM, Verpoorte R (1993) Purification and characterization of anthranilate synthase from Catharanthus roseus. Eur J Biochem 212:431–440

    Article  Google Scholar 

  • Powlowski JB, Dagley S, Massey V, Ballou DP (1987) Properties of anthranilate hydroxylase (deaminating), a flavoprotein from Trichosporon cutaneum. J Biol Chem 262:69–74

    PubMed  CAS  Google Scholar 

  • Raghothama KG, Lawton KA, Goldsbrough PB, Woodson WR (1991) Characterization of an ethylene-regulated flower senescence-related gene from carnation. Plant Mol Biol 17:61–71

    Article  PubMed  CAS  Google Scholar 

  • Rebéillé F (1988) Photosynthesis and respiration in air-grown and CO2-grown photoautotrophic cell suspension cultures of carnation. Plant Sci 54:11–21

    Article  Google Scholar 

  • Rechinger KH (ed) (1979) Gustav Hegi, Illustrierte Flora von Mitteleuropa, Vol III/2 Paul Parey, Berlin, pp 984–1037

    Google Scholar 

  • Reinhard K (1992) Enzymologie der Phytoalexinsynthese in Zellkulturen der Nelke (Dianthus caryophyllus L.). PhD Thesis, University of Freiburg

    Google Scholar 

  • Reinhard K, Matern U (1989) The biosynthesis of phytoalexins in Dianthus caryophyllus L. cell cultures: induction of benzoyl-CoA: anthranilate N-benzoyltransferase activity. Arch Biochem Biophys 275:295–301

    Article  PubMed  CAS  Google Scholar 

  • Reinhard K, Matern U (1991) Different types of microsomal enzymes catalyze ortho-or para-hydroxylation in the biosynthesis of carnation phytoalexins. FEBS Lett 294:67–72

    Article  PubMed  CAS  Google Scholar 

  • Reisbig RR, Bruland O (1983) Dianthin 30 and 32 from Dianthus caryophyllus: two inhibitors of plant protein synthesis and their tissue distribution. Arch Biochem Biophys 224:700–706

    Article  PubMed  CAS  Google Scholar 

  • Rouet-Mayer M-A, Bureau J-M, Laurière C (1992) Identification and characterization of lipoxygenase isoforms in senescing carnation petals. Plant Physiol 98:971–978

    Article  PubMed  CAS  Google Scholar 

  • Schmoeckel A (1993) Die Anthranilatsynthase aus Zellkulturen der Nelke (Dianthus caryophyllus L.). Diploma Thesis, University of Freiburg

    Google Scholar 

  • Seibert M (1976) Shoot initiation from carnation shoot apices frozen to — 196°C. Science 191:1178–1179

    Article  PubMed  CAS  Google Scholar 

  • Silvy A (1978) Mutation breeding in carnation. In: Quagliotti L, Baldi A (eds) Proc Eucarpia Meet on Carnation and Gerbera, Alassio. Institute of Plant Breeding and Seed Production, Turin, Italy, pp 91–102

    Google Scholar 

  • Smith MT, Saks Y, van Staden J (1992) Ultrastructural changes in the petals of senescing flowers of Dianthus caryophyllus L. Ann Bot 69:277–285

    Google Scholar 

  • Sparnaaij L (ed) (1987) Third Int Symp carnation culture. Acta Hortic 216, Int Soc Hortic Sci, Wageningen

    Google Scholar 

  • Spribille R, Forkmann G (1982) Chalcone synthesis and hydroxylation of flavonoids in 3′-position with enzyme preparations from flowers of Dianthus caryophyllus L. (carnation). Planta 155:176–182

    Article  CAS  Google Scholar 

  • Stich K, Eidenberger T, Wurst F, Forkmann G (1992a) Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187:193–208

    Article  Google Scholar 

  • Stich K, Eidenberger T, Wurst F, Forkmann G (1992b) Flavonol synthase activity and the regulation of flavonol and anthocyanin biosynthesis during flower development in Dianthus caryophyllus L. (carnation). Z Naturforsch 47c: 553–560

    Google Scholar 

  • Stirpe F, Williams DG, Onyon LJ, Legg RF, Stevens WA (1981):Dianthins, ribosome-damaging proteins with anti-viral properties from Dianthus caryophyllus L. (carnation). Biochem J 195:399–405

    PubMed  CAS  Google Scholar 

  • Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA (1992) Ribosome-inactivating proteins from plants: present status and future prospects. Bio/Technology 10:405–412

    Article  PubMed  CAS  Google Scholar 

  • Terahara N, Yamaguchi M-A (1986) 1H NMR Spectral analysis of the malylated anthocyanins from Dianthus. Phytochemistry 25:2906–2907

    Article  CAS  Google Scholar 

  • Terahara N, Yamaguchi M, Takeda K, Harborne JB, Self R (1986) Anthocyanins acylated with malic acid in Dianthus caryophyllus and Dianthus deltoides. Phytochemistry 25:1715–1717

    Article  CAS  Google Scholar 

  • Trujillo EE, Shimabuku R, Cavin CA, Aragaki M (1988) Rhizoctonia solani anastomosis groupings in carnation fields and their pathogenicity to carnation. Plant Dis 72:863–865

    Article  Google Scholar 

  • Tzuri G, Hillel J, Lavi U, Haberfeld A, Vainstein A (1991) DNA fingerprint analysis of ornamental plants. Plant Sci 79:91–97

    Article  Google Scholar 

  • van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Walker MS, DeMoss JA (1990) Deletion analysis of domain independence in the TRP1 gene product of Neurospora crassa. Mol Gen Genet 223:49–57

    Article  PubMed  CAS  Google Scholar 

  • Walsh CT, Erion MD, Walts AE, Delany III JJ, Berchtold GA (1987) Chorismate aminations: partial purification of Escherichia coli PABA synthase and mechanistic comparison with anthranilate synthase. Biochemistry 26:4734–4745

    Article  PubMed  CAS  Google Scholar 

  • Williams A, Salvadori G (1971) Studies on the hydrolysis of 3,l-benzoxazin-4-ones. J Chem Soc Phys Org: 1105-1110

    Google Scholar 

  • Yaron A, Naider F (1993) Proline-dependent structural and biological properties of peptides and proteins. Crit Rev Biochem Mol Biol 28:31–81

    Article  PubMed  CAS  Google Scholar 

  • Yu SH, Kang HW, Lee HB, Kim HG (1989) Occurrence of Alternaria dianthi on carnation in Korea. Korean J Mycol 17:229–232

    Google Scholar 

  • Ziv M, Schwartz A, Fleminger D (1987) Malfunctioning stomata in vitreous leaves of carnation (Dianthus caryophyllus) plants propagated in vitro; implications for hardening. Plant Sci 52:127–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matern, U. (1994). Dianthus Species (Carnation): In Vitro Culture and the Biosynthesis of Dianthalexin and Other Secondary Metabolites. In: Bajaj, Y.P.S. (eds) Medicinal and Aromatic Plants VII. Biotechnology in Agriculture and Forestry, vol 28. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30369-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-30369-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-30371-9

  • Online ISBN: 978-3-662-30369-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics