Claviceps purpurea (Ergot): Culture and Bioproduction of Ergot Alkaloids

  • V. Křen
  • P. Harazim
  • Z. Malinka
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 28)


Ergot (Claviceps purpurea), best known as a disease of rye and some other grasses, is probably the most widely cultivated fungus and has now become an important field crop. The main reason for its importance is the presence of ergot alkaloids, extensively used in medicine. Currently, ergot alkaloids cover a large field of therapeutic uses as drugs of high potency in the treatment of uterine atonia, postpartum bleeding, migraine, orthostatic circulatory disturbances, senile cerebral insufficiency, hypertension, hyperprolactinemia, acromegaly, and parkinsonism (Berde and Schild 1978). Recently, new therapeutic uses have emerged, such as, e. g., against schizophrenia (Markstein et al. 1992), applications based on newly discovered antibacterial (Eich et al. 1985) and cytostatic effects (Eich at al. 1986), immunomodulatory (Šterzl et al. 1987) and hypolipemic activity (Golda et al. 1980; Cincotta and Meier 1989).


Tall Fescue Submerged Culture Ergot Alkaloid Alkaloid Production Alkaloid Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambike SH, Baxter RM, Zahid ND (1970) The relationship of cytochrome P-450 levels and alkaloid synthesis in Claviceps purpurea. Phytochemistry 9:1953–1958CrossRefGoogle Scholar
  2. Arechavaleta M, Bacon CW, Plattner RD, Hoveland CS, Radclife DE (1992) Accumulation of ergopeptide alkaloids in symbiotic tall fescue grown under deficits of soil water and nitrogen fertilizer. Appl Environ Microbiol 58:857–861PubMedGoogle Scholar
  3. Bacon CW (1988) Procedure for isolating the endophyte from tall fescue and screening isolates for ergot alkaloids. Appl Environ Microbiol 54:2615–2618PubMedGoogle Scholar
  4. Basset RA, Chain EB, Dickerson AG, Mantle PG (1972) Comparative metabolism of Claviceps purpurea in vivo and in vitro. Biochem J 127 3p–4pGoogle Scholar
  5. Berde B, Schild HO (eds) (1978) Ergot alkaloids and related compounds. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Bové FJ (1970) The story of ergot. Karger, BaselGoogle Scholar
  7. Brady LR (1962) Phylogenetic distribution of parasitism by Claviceps species. Lloydia 25:1–36Google Scholar
  8. Brauer KL, Robbers JE (1987) Induced parasexual processes in Claviceps sp. strain SD-58. Appl Environ Microbiol 53:70–73Google Scholar
  9. Bretag TW (1985) Control of ergot by a selective herbicide and stubble burning. Trans Br Mycol Soc 85:341–343CrossRefGoogle Scholar
  10. Buck KW, Chen AG, Dickerson AG, Chain EB (1968) Formation and structure of extracellular glucans produced by Claviceps species. J Gen Microbiol 51:337–352PubMedCrossRefGoogle Scholar
  11. Chahal SS, Rao VP, Thakur RP (1985) Variation in morphology and pathogenicity in Claviceps fusiformis, the causal agent of pearl millet ergot. Trans Br Mycol Soc 84:325–332CrossRefGoogle Scholar
  12. Cheng L-J, Robbers JE, Floss HG (1980) End-product regulation of ergot alkaloid formation in intact cells and protoplasts of Claviceps species, strain SD-58. J Nat Prod 43:329–339CrossRefGoogle Scholar
  13. Cincotta AH, Meier AH (1989) Reduction of body set stores and total plasma cholesterol and triglyceride concentrations in several species by bromocryptine treatment. Life Sci 45:2247–2254PubMedCrossRefGoogle Scholar
  14. Comino A, Kolar M, Schwab H, Sočič H (1989) Heterologous transformation of Claviceps purpurea. Biotechnol Lett 11:389–392CrossRefGoogle Scholar
  15. Düvell A, Hessberg-Stutzke H, Oeser B, Rogmann-Backwindel P, Tudzynski P (1988) Structural and functional analysis of mitochondrial plasmids in Claviceps purpurea. Mol Gen Genet 214:128–134PubMedCrossRefGoogle Scholar
  16. Duvick BDN (1966) Influence of morphology and sterility on breeding methodology. In: Frey KJ (ed) Plant breeding. Iowa State University Press, Ames, pp 85–138Google Scholar
  17. Edwards RJ, Fulde GWO, McGrath MA (1991) Successful limb salvage with prostaglandin infusion: a review of ergotamine toxicity. Med J Aust 155:825–827PubMedGoogle Scholar
  18. Eich E, Eichberg D, Schwarz G, Class F, Loos M (1985) Antimicrobial activity of clavines. Arzneim-Forsch/Drug Res 35(II): 1760–1762Google Scholar
  19. Eich E, Becker C, Sieben R, Maidhof A, Müller WEG (1986) Clavines as antitumor agents, 3:Cytostatic activity and structure/activity relationship of 1-alkyl agroclavines and 6-alkyl 6-noragroclavines. J Antibiot 39:804–812PubMedCrossRefGoogle Scholar
  20. Flieger M, Votruba J, Křen V, Pažoutová S, Rylko V, Sajdl P, Řeháček Z (1988) Physiological control and process kinetics of clavine alkaloid production by Claviceps purpurea. Appl Microbiol Biotechnol 29:181–185Google Scholar
  21. Floss HG (1976) Biosynthesis of ergot alkaloids and related compounds. Tetrahedron 32:873–912CrossRefGoogle Scholar
  22. Friedman M, Dao L, Gumbmann MR (1989) Ergot alkaloid and chlorogenic acid content in different varieties of morning-glory (Ipomoea spp) seeds. J Agric Food Chem 37:708–712CrossRefGoogle Scholar
  23. Gabbai A, Lisbonne L, Pourquier H (1951) Ergot poisoning at Pont St. Esprit. Br Med J 2:650–651PubMedCrossRefGoogle Scholar
  24. Gaberc-Porekar V, Didek-Brumec M, Sočič H (1990) Carbohydrate metabolism during submerged production of ergot alkaloids. Appl Microbiol Biotechnol 34:83–86CrossRefGoogle Scholar
  25. Gilman AG, Goodman LS, Rall TW, Murad F (eds) (1985) Goodman and Gilman’s The pharmoco-logical basis of therapeutics, 7th edn. Macmillan, New York, pp 931–940Google Scholar
  26. Golda V, Petr R, Cerman J, Suba P, Votruba M (1980) Studies on behaviour, brain and plasma biochemistry in normotensive, genetically hypertensive, nonobese and/or genetically hypertensive obese rats: effects of bromocryptine. Sci Pap Fac Med Charles Univ Hradec Králové 23:283–305Google Scholar
  27. Gröger D, Gröger L, D’Amico D, He M-X, Floss HG (1991) Steric course of the N-methylation in the biosynthesis of ergot alkaloids by Claviceps purpurea. J Basic Microbiol 31:121–125PubMedCrossRefGoogle Scholar
  28. Harazim P, Valík J, Malinka Z, Kybal J (1988) A method for fermentative preparation of ergot inoculum. Czech Pat 243 009Google Scholar
  29. Heinstein PF, Lee SL, Floss HG (1971) Isolation of DMAPP-trytophan dimethylallyltransferase from the ergot fungus (Claviceps sp.). Biochem Biophys Res Commun 44:1244–1251PubMedCrossRefGoogle Scholar
  30. Keller U (1983) Highly efficient mutagenesis of Claviceps purpurea by using protoplasts. Appl Environ Microbiol 46:580–584PubMedGoogle Scholar
  31. Kim S-U, Cho Y-J, Floss HG (1983) Conversion of elymoclavine to paspalic acid by a particulate fraction from an ergotamine-producing strain. Planta Med 48:145–148PubMedCrossRefGoogle Scholar
  32. Kobel H, Sanglier J-J (1986) Ergot alkaloids. In: Rehm H-J, Reed G (eds) Biotechnology, vol 4. VCH, Weinheim, pp 569–609Google Scholar
  33. Kopp B, Rehm H-J (1983) Alkaloid production by immobilized mycelia of Claviceps purpurea. Eur J Appl Microbiol Biotechnol 18:257–263CrossRefGoogle Scholar
  34. Kopp B, Rehm H-J (1984) Semicontinuous cultivation of immobilized Claviceps purpurea. Appl Microbiol Biotechnol 19:141–145CrossRefGoogle Scholar
  35. Křen V, (1990) Complex exploitation of Claviceps immobilized cells. In: de Bont J, Visser J, Mattiasson B, Tramper V (eds) Physiology of immobilized cells. Proc Int Symp Wageningen, 10–13.12.1989. Elsevier, Amsterdam, pp 551–556Google Scholar
  36. Křen V (1991) Bioconversions of ergot alkaloids (review). Adv Biochem Eng 44:123–144Google Scholar
  37. Křen V, Řeháček Z (1984) Feedforward regulation of phosphofructokinase in a submerged culture of Claviceps purpurea producing clavine alkaloids. Speculations Sci Technol 7:223–226Google Scholar
  38. Křen V, Pažoutová S, Rylko V, Sajdl P, Wurst M, Řeháček Z (1984) Extracellular metabolism of sucrose in a submerged culture of Claviceps purpurea in relation to formation of monosaccharides and clavine alkaloids. Appl Environ Microbiol 48:826–829PubMedGoogle Scholar
  39. Křen V, Řezanka T, Řeháček Z (1985a) Occurrence of ricinoleic acid in submerged cultures of various Claviceps species. Experientia 41:1476–1477CrossRefGoogle Scholar
  40. Křen V, Řezanka T, Sajdl P, Řeháček Z (1985b) Identification of fatty acids in submerged cultures of Claviceps species. FEMS Microbiol Lett 30:359–363CrossRefGoogle Scholar
  41. Křen V, Pažoutová S, Rylko V, Řeháček Z (1986a) Saprophytic production of clavine alkaloids and activity of 3-hydroxy-3-methylglutaryl coenzyme-A reductase. Folia Microbiol 31:282–287CrossRefGoogle Scholar
  42. Křen V, Řezanka T, Sajdl P, Řeháček Z (1986b) Identification of sterols in submerged cultures of different Claviceps species. Biochem Physiol Pflanz 181:505–510CrossRefGoogle Scholar
  43. Kfen V, Chomátová S, Břemek J, Pilát P, Řeháček Z (1986c) Effect of some broad-specturm antibiotic on the high-production strain Claviceps fusiformis W1. Biotechnol Lett 8:327–332CrossRefGoogle Scholar
  44. Křen V, Pažoutová S, Sedmera P, Rylko V, Řeháček Z (1986d) High-production mutant Claviceps purpurea 59 accumulating secoclavines. FEMS Microbiol Lett 37:31–34CrossRefGoogle Scholar
  45. Křen V, Mehta P, Rylko V, Flieger M, Kozová J, Řeháček Z (1987a) Substrate regulation of elymoclavine formation by some saccharides. Zentralbl Mikrobiol 142:71–85PubMedGoogle Scholar
  46. Křen V, Ludvík J, Kofroňová O, Kozová J, Řeháček Z (1987b) Physiological activity of immobilized cells of Claviceps fusiformis during long-term semicontinuous cultivation. Appl Microbiol Biotechnol 26:219–226CrossRefGoogle Scholar
  47. Kfen V, Břemek J, Flieger M, Kozová J, Malinka Z, Řeháček Z (1989) Bioconversion of agroclavine by free and immobilized Claviceps fusiformis cells. Enzyme Microb Technol 11:685–691CrossRefGoogle Scholar
  48. Křen V, Pažoutová S, Rezanka T, Víden I, Amler E, Sajdl P (1990a) Regulation of lipid and ergot alkaloid biosynthesis in Claviceps purpurea by chlorophenoxy acids. Biochem Physiol Pflanz 186:99–108CrossRefGoogle Scholar
  49. Křen V, Flieger M, Sajdl P (1990b) Glycosylation of ergot alkaloids by free and immobilized Claviceps purpurea cells. Appl Microbiol Biotechnol 32:645–650CrossRefGoogle Scholar
  50. Kybal J, Sikyta B (1985) A device for cultivation of plant and animal cells. Biotechnol Lett 7:467–470CrossRefGoogle Scholar
  51. Kybal J, Sikyta B (1986) Renaissance der Oberflächenkultur: Produktion von Mutterkornalkaloiden und Sporenbildung. Acta Biotechnol 6:245–251CrossRefGoogle Scholar
  52. Kybal J, Nesrsta M, Strnadová K, Břemek J, Valik J, Povazská H (1990) A method for production of storable preparates with high content of viable spores of filamentous fungi. Czech Pat Appl PV 01609-90 (2.4.90)Google Scholar
  53. Loveless AR (1971) Conidial evidence for host restriction in Claviceps purpurea. Trans Br Mycol Soc 56:419–434CrossRefGoogle Scholar
  54. Loveless AR, Peach JM (1986) Evidence from ascospores for host restriction in Claviceps purpurea. Trans Br Mycol Soc 86:603–610CrossRefGoogle Scholar
  55. Maier W, Erge D, Schmidt J, Gröger D (1980) A blocked mutant of Claviceps purpurea accumulating chanoclavine-I-aldehyde. Experientia 36:1353–1354CrossRefGoogle Scholar
  56. Markstein R, Seiler MP, Jaton A, Briner U (1992) Structure activity relationship and therapeutic uses of dopaminergic ergots. Neurochem Int 20:211S-214SCrossRefGoogle Scholar
  57. Martin JF (1977) Control of antibiotic synthesis by phosphate. Adv Biochem Eng 6:105–127Google Scholar
  58. Ninomiya I (1992) Recent progress in the synthesis of indole alkaloids. J Nat Prod 55:541–564CrossRefGoogle Scholar
  59. Otsuka H, Quingley FR, Gröger D, Anderson JA, Floss HG (1980) In vivo and in vitro evidence for N-methylation as the second pathway-specific step in ergoline biosynthesis. Planta Med 40:109–119CrossRefGoogle Scholar
  60. Pažoutová S, Řeháček Z (1981) The role of citrate on the oxidative metabolism of submerged cultures of Claviceps purpurea 129. Arch Microbiol 129:251–253CrossRefGoogle Scholar
  61. Pažoutová S, Řeháček Z (1984) Phosphate regulation of phosphatases in submerged cultures of Claviceps purpurea 129 producing clavine alkaloids. Appl Microbiol Biotechnol 20:389–392CrossRefGoogle Scholar
  62. Puc A, Socic H (1977) Carbohydrate nutrition of Claviceps purpurea for alkaloid production related to the osmolarity of media. Eur J Appl Microbiol 4:283–287CrossRefGoogle Scholar
  63. Rentschler & Co (1972) Verfahren Zur Erzeugung von Mutterkorn auf Gramineen. Ger Pat 2 048 398Google Scholar
  64. Reshetilova TA, Kozlovskii AG (1990) Biosynthesis of alkaloids by mycelial fungi (review). Prikl Biokhim Mikrobiol 26:291–306PubMedGoogle Scholar
  65. Robbers JE, Eggert WW, Floss HG (1978) Physiological studies on ergot. Time factor influence on the inhibitory effect of phosphate and the induction effect of tryptophan on alkaloid production. Lloydia 41:120–129Google Scholar
  66. Roy S, Kumar A (1985) Production of alkaloids by ergot (Claviceps fusiformis Lov.) on Pennisetum typhoides (Burm.) Stapf and Hubb. in vitro. In: Neumann KH, Bart W (eds) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York, pp 117–123CrossRefGoogle Scholar
  67. Schmauder H-P (1982) saprophytic production of ergot alkaloids. In: Atal CK, Kapur BM (eds) Cultivation and utilization of medicinal plants. Regional Res Lab, CSIR, Jammu-Tawi, India, pp 188–206Google Scholar
  68. Shibuya M, Chou H-M, Fontoulakis M, Hassam S, Kim S-U, Kobayashi K, Otsuka H, Rogalska E, Cassady JM, Floss HG (1990) Stereochemistry of the isoprenylation of tryptophan catalyzed by 4-(γ,γ-dimethylallyl) tryptophan synthase from Claviceps, the first pathway-specific enzyme in ergot alkaloid biosynthesis. J Am Chem Soc 112:297–304CrossRefGoogle Scholar
  69. Spalla C, Marnati MP (1978) Genetic aspects of the formation of ergot alkaloids. In: Hütter R, Leisinger T, Nuesch J, Wehrli W (eds) Antibiotics and other secondary metabolites. FEMS SYMP 1978, Academic Press, London, pp 219–232Google Scholar
  70. Srikrai S, Robbers JE (1983) Methods for mutation and selection of the ergot fungus. Appl Environ Microbiol 45:1165–1169PubMedGoogle Scholar
  71. Sterzl J, Řeháček Z, Cudlín J (1987) Regulation of the immune response by ergot alkaloids. Czech Med 1:90–98Google Scholar
  72. Stoll A (1942) Altes und Neues über Mutterkorn. Mitt Naturforsch Ges Bern 1942:45–80Google Scholar
  73. Stoll A, Brack A (1944) Zum feldmässigen Anbau von Mutterkorn. Pharm Acta Helv 19:118–123Google Scholar
  74. Tanner JR (1987) St. Anthony’s fire, then and now: a case report and historical review. Can J Surg 30:291–293Google Scholar
  75. Tudzynski P, Esser K (1982) Genetics of the ergot fungus Claviceps purpurea Part 2. Exchange of genetic material via meiotic recombination. Theor Appl Genet 61:97–100CrossRefGoogle Scholar
  76. Tudzynski P, Düvell A, Esser K (1983) Extrachromosomal genetics of Claviceps purpurea. I. Mitochondrial DNA and mitochondrial plasmids. Curr Genet 7:145–150Google Scholar
  77. Tulasne LR (1853) Mémoire sur l’ergot des glumacées. Ann Sci Nat 20:5–56Google Scholar
  78. Valík J, Malinka Z (1992) New inoculating material for parasitical production of ergot. In: Steiner W, Haltrich H (eds) Biotechnology in Central European Initiative Countries. 1st Conf, Graz, Austria, April 13, 1992. p 81Google Scholar
  79. van Engelenburg F, Smit R, Goosen T, van den Broek H, Tudzynski P (1989) Transformation of Claviceps purpurea using a bleomycin resistance gene. Appl Microbiol Biotechnol 30:364–370CrossRefGoogle Scholar
  80. Wood G, Cooley-Smith JR (1980) The effectiveness of fungicides used against Claviceps purpurea attacking male-sterile barley in field trials. Ann Appl Biol 96:169–175CrossRefGoogle Scholar
  81. Wood G, Cooley-Smith JR (1982) Observation on the prevalence and incidence of ergot disease in Great Britain with special reference to open-flowering male-serile cereals. Ann Appl Biol 95:41–46CrossRefGoogle Scholar
  82. Wood G, Cooley-Smith JR (1982) Epidemiology of ergot disease (Claviceps purpurea) in open flowering male-sterile cereals. Ann Appl Biol 100:73–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • V. Křen
    • 1
  • P. Harazim
    • 2
  • Z. Malinka
    • 2
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Galena-Pharmaceutical WorksOpavaCzech Republic

Personalised recommendations