Skip to main content

Solids Motion and Heat Transfer in Gas Fluidized Beds

  • Conference paper
Direct-Contact Heat Transfer
  • 395 Accesses

Abstract

When a bed of solid particles is subjected to an upward fluid flow above a critical velocity called the minimum fluidization velocity, the bed becomes fluid-like in a number of respects and is said to be fluidized. Because of the very large surface area, heat and mass exchange between the fluid and the solids are extremely efficient. In the case of typical gas fluidized beds, the solids also possess large mean and fluctuating velocities, thus promoting solids mixing and facilitating the addition and removal of the solids. These conditions favor the use of fluidized beds as chemical reactors, including as a special case combustors for solid, liquid, and gaseous fuels. Furthermore, the intense solids motion enhances heat exchange between the solids and immersed surfaces, permitting direct heat removal at low temperature drop using immersed heat-exchange tubes. Fluidized beds are also used in various configurations as heat exchangers. These and many other applications can be found in standard references (Kunii and Levenspiel, 1969; Davidson and Harrison, 1971; Kunii and Toei, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams R. L., and J. R. Welty (1979), “A Gas Convective Model of Heat Transfer Aerov, M. E., 1951, Diss., Inst. Khim. Machinostr., Moscow Antonishin, N. V. Geller, M. A. and A. L. Parnas, 1974, J. Engng. Phys., (Engl. trans.), 23:353.

    Google Scholar 

  • Anderson, T. B., and R. Jackson (1969), “A Fluid Mechanical Description of Fluidized Beds: Comparison of Theory and Experimental,” Ind. Eng. Chem. Fundamentals, 8:1, 137–144.

    Article  Google Scholar 

  • Anderson, T. B., and R. Jackson (1967), “A Fluid Mechanical Description of Fluidized Beds: Equations of Motion,” Ind. and Eng. Fundamentals, 6:4, 527–539.

    Article  Google Scholar 

  • Azad, F. H., and M. F. Modest (1981), “Combined Radiation and Convection in Absorbing, Emitting and Anisotropically Scattering Gas-particle Tube Flow,” Int. J. Heat Mass Transfer, 24:1681–98.

    Article  MATH  Google Scholar 

  • Batchelor, G. K. (1974), “Transport Properties of Two Phase Materials with Random Structure,” Ann. Rev. Fluid Mech., 6:227–255.

    Article  ADS  Google Scholar 

  • Bock, H. J. (1983), “Heat Transfer in Fluidized Beds,” Fluidiza-tion VI, 5-2:1–8.

    Google Scholar 

  • Borodulya, V. A. and V. I. Korensky (1983), “Radiative Heat Transfer Between a Fluidized Bed and a Surface,” Int. J. Heat and Mass Transfer, 26:2;277–287.

    Article  Google Scholar 

  • Botterill, J. S. M. (1975), Fluid-Bed Heat Transfer, Academic Press.

    Google Scholar 

  • Botterill, J. S. M., K. A. Redish, D. K. Ross, and J. R. Williams (1962), Proc. Symp. Interact. Fluids Particles, 183.

    Google Scholar 

  • Botterill, J. S. M., M. H. D. Butt, G. L. Cain, and K. A. Redish (1967), Proc. Int. Symp. Fluidization, 442.

    Google Scholar 

  • Brewster, M. Q., and C.-L. Tien (1982), “Radiative Transfer in Packed Fluidized Beds: Dependent versus Independent Scattering,” J. of H. Transfer, 104:0;573–579.

    Article  Google Scholar 

  • Chan, C. K., and C.-L. Tien (1974), “Radiative Transfer in Packed Spheres,” J. Heat Transfer, 96:52–58.

    Article  Google Scholar 

  • Chandran, R. L. (1980), Local Heat Transfer and Fluidization Dynamics around Horizontal Tubes in Fluidized Beds,” Ph.D. Dis., Lehigh University, Bethlehem, Pa.

    Google Scholar 

  • Chandran, R., and J. Chen, “A Heat Transfer Model for Tubes Immersed in Gas Fluidized Beds,” AIChE J., 31-244-252.

    Google Scholar 

  • Chang, H-C (1983), “Effective Diffusion and Conduction in Two Phase Media,” AIChE J., 29:846–53.

    Article  Google Scholar 

  • Chen, M. M., J. Liljegren, and B. T. Chao (1984), “The Effects of Bed Internals on the Solids Velocity Distribution in Gas Fluidized Beds,” Fluidization, D. Kunii and R. Toei, Eds., Engineering Foundation, New York.

    Google Scholar 

  • Chen, M. M., J. S. Lin, and B. T. Chao (1981), Computer-Aided Particle Tracking: A Technique for Studying Solid Particle Dynamics in Gas or Liquid Fluidized Beds, presented at AIChE Annual Meeting, New Orleans, La.

    Google Scholar 

  • Chung, Y. C. and L. G. Leal (1982), “An Experimental Study of the Effective Thermal Conductivity of a Sheared Suspension of Rigid Spheres,” Int. J. Multiphase Flow, 8:605–22.

    Article  Google Scholar 

  • Collingham, R. E. (1968), Ph.D. Thesis, University of Minnesota.

    Google Scholar 

  • Danziger, W. J. (1963), Heat Transfer to Fluidized Gas Solid Mixtures in Vertical Transport,” Ind. Eng. Chem., 2:269–76.

    Article  Google Scholar 

  • Davidson, J. F. and D. Harrison (1971), Fluidization, Academic Press, New York.

    Google Scholar 

  • Depew, C. A. and L. Farbar (1963), “Heat Transfer to Pneumatically Conveyed Glass Particles of Fixed Size,” J. Heat Transfer, C85:164–72.

    Article  Google Scholar 

  • Dow, W. M., and M. Jakob (1951), Chem. Eng. Prog., 47:537.

    Google Scholar 

  • Farbar, L., and M. J. Morley (1957), “Heat Transfer to Flowing Gas-solid Mixtures in a Circular Tube,” Ind. Eng. Chem., 49:1143–50.

    Article  Google Scholar 

  • Farbar, L., and C. A. Depew (1963), “Heat transfer effects to gas-solid mixtures using solid spherical particles of uniform size,” Ind. Engr. Chem. Fundam., 2:130–5.

    Article  Google Scholar 

  • Gabor, J. D. (1970a), Chem. Eng. Prog., Symp. Ser., 66/105:76.

    Google Scholar 

  • Gabor, J. D. (1970b), Chem. Eng. Sci., 25:959.

    Google Scholar 

  • Gelperin, N. I. (1940), Khim. Mahinostr. No. 3, 1 Gelperin, N. I., and V. G. Einstein, 1971 “Heat Transfer in Fluidized Beds,” in Fluidization, J. F. Davidson and D. Harrison, Eds., Academic Press. 471-536.

    Google Scholar 

  • Gelperin, N. I., V. G. Einshtein, L. A. Korotyanskaya, and J. P. Peierozchikova (1968), TOKHT, 2:430.

    Google Scholar 

  • Gelperin, N. I., V. G. Einshtein, and A. V. Zaikovski (1966), “Variation of Heat-Transfer around the Perimeter of a Horizontal Tube in a Fluidized Bed,” J. Eng. Phys, 10-473-475.

    Google Scholar 

  • Gidaspow, D. B., B. Ettahadieh, and R. W. Lyczkowski (1984), Hydrodynamics of Fluidization in a Semicircular Bed with a Jet, AIChE J., 30:4, 529–536.

    Google Scholar 

  • Glass, D. H. (1967), Ph.D dissertation, University of Cambridge.

    Google Scholar 

  • Gorbis, Z. R., and R. A. Bakhtiozin (1962), “Investigation of Convection Heat Transfer to a Gas Graphite Suspension in Vertical Channels,” Sov. J. At. Energy, 12:402–9.

    Article  Google Scholar 

  • Handly, M. F., and M. G. Perry (1965), Rheol. Acta., 4:225.

    Article  Google Scholar 

  • Heertjes, P. M., J. Verloop, and R. Williams (1970/71), “The Measurement of Local Mass Flow Rates and Particle Velocities in Fluid-Solid Flow,” Powder Technology, 4:38.

    Article  Google Scholar 

  • Hetsroni, G. (Ed.) (1982), Handbook of Multiphase Systems, McGraw-Hill.

    Google Scholar 

  • Iwashko, M. A. (1985), “Effect of Solids Circulation on Heat Transfer from an Immersed Horizontal Rod in a Gas Fluidized Bed.” MS Thesis, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Jackson, R. (1963a) “The Mechanics of Fluidized Beds: Part I. The Stability of the State of Uniform Fluidization,” Trans. Inst. Chem. Engrs., 41:13–21.

    Google Scholar 

  • Jackson, R. (1963b), “The Mechanics of Fluidized Beds: Part II. The Motion of Fully Developed Bubbles,” Trans. Inst. Chem. Engrs., 41:22–28.

    Google Scholar 

  • Kim, J. M., and J. D. Seader (1983), “Heat Transfer to Gas-solids Suspensions Flowing Cocurrently Downward in a Circular Tube,” AIChE J., 29:306–12.

    Article  Google Scholar 

  • Kobayashi, M., D. Ramaswami, and W. T. Brazelton (1970), Chem. Eng. Prog., Symp. Ser., 66/105-58.

    Google Scholar 

  • Kondukov, N. B., A. N. Kornilaev, I. M. Skachko, A. A. Akromenkov, and A. S. Kruglov (1964), “An Investigation of the Parameters of Moving Particles in a Fluidized Bed by a Radiosotropic Method,” Int. Chem. Eng., 4:1, 43–47.

    Google Scholar 

  • Kunii, D., and O. Levenspiel (1969), Fluidization Engineering, John Wiley, New York.

    Google Scholar 

  • Kunii, D. and R. Toei (1984), Fluidization, Engineering Foundation, New York.

    Google Scholar 

  • Leal, L. G. (1973), “On the Effective Conductivity of a Dilute Suspension of Spherical Drops in the Limit of Low Particle Peclet Number,” Chem. Engng Commun., 1:21–31.

    Article  Google Scholar 

  • Levenspiel, O., and J. S. Walton (1954), Chem. Eng. Prog., Symp., Ser. 50-9:1.

    Google Scholar 

  • Liljegren, J. C. (1984), M.S. Thesis, University of Dlinois at Urbana-Champaign.

    Google Scholar 

  • Lin, J. S. (1981), “Particle Tracking Studies for Solids Motion in a Gas Fluidized Bed,” Ph.D. Thesis, Department of Mechanical and Industrial Engineering, University of Dlinois at Urbana-Champaign.

    Google Scholar 

  • Lin, J. S., M. M. Chen, and B. T. Chao (1985), “A Novel Radioactive Particle Tracking Facility for Measurement of Solids Motion in Fluidized Beds,” AIChE J., 31:3, 465–473.

    Article  Google Scholar 

  • Mamaev, V. V., V. S. Nosov, N. I. Syromyatnikov, and V. S. Barbolin (1976), “Heat Transfer of Gas-suspension Flow in Horizontal and Vertical Tubes,” J. Eng. Phys., 31:1146–9.

    Article  Google Scholar 

  • Marscheck, R. M., and A. Gomezplata (1965), “Particle Flow Patterns in a Fluidized Bed,” AIChE J., 11:167.

    Article  Google Scholar 

  • Masson, H., K. Dan Tran, and G. Rios (1981), “Circulation of a Large Isolated Sphere in a Gas-Solid Fluid Bed,” Int. Chem. Eng. Symposium, Series No. 65.

    Google Scholar 

  • Mastanaiah, K., and E. N. Ganici (1981), “Heat Transfer in Two Component Dispersed Flow,” J. Heat Trans., 103:300–306.

    Article  Google Scholar 

  • Merry, J. M., and J. F. Davidson (1973), “Gulf Stream Circulation in Shallow Fluidized Beds,” Trans. Inst. Chem. Engrs., 51:351–368.

    Google Scholar 

  • Mickley, H. S., and F. Fairbanks (1955), “Mechanism of Heat Transfer to Fluidized Beds, AIChE J., 1:3, 374–386.

    Article  Google Scholar 

  • Moslemian, D. (1986), “Study of Solids Motion, Mixing and Heat Transfer in Gas Fluidized Beds,” Ph.D. Thesis, University of Illinois at Urbana-Champaign.

    Google Scholar 

  • Murray, J. D. (1965a), “On the Mathematics of Fluidization: Part I. Fundamental Equations and Wave Propagation,” J. Fluid Mech., 21:3, 465–493.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Murray, J. D. (1965b), “On the Mathematics of Fluidization: Part H. Steady Motion of Fully Developed Bubbles,” J. Fluid Mech., 22:1, 57–80.

    Article  MathSciNet  ADS  Google Scholar 

  • Nir, A., and A. Acrivos (1973), “The Effective Thermal Conductivity of Sheared Suspensions,” J. Fluid Mech., 78:33–40.

    Article  ADS  Google Scholar 

  • Noack, R. (1970), Chem. Eng. Tech., 42:371.

    Google Scholar 

  • Oki, K., M. Ishida, and T. Shirai (1980), “The Behavior of Jets and Particles near the Gas Distributor Grid in a Three-Dimensional Fluidized Bed,” Proc. Intl., Conf. on Fluidization, Henniker, NH, pp. 421-428.

    Google Scholar 

  • Pfeffer, R., S. Rossetti, and S. Licklein (1966), “Analysis and Correlation of Heat Transfer Coefficient and Friction Factor Data for Dilute Gas Solid Suspensions,” NASA TN D-3603. Rowe, P. N. (1971), “Experimental properties of bubbles,” in Fluidization, J. F. Davidson and D. Harrison, Eds., Academic Press.

    Google Scholar 

  • Saxena, S. C, N. S. Grewal, J. D. Gabor, S. S. Zabrodsky, and D. M. Galershtein (1978), “Heat Transfer Between a Gas Fluidized Bed and Immersed Tubes,” Advances in Heat Transfer, 14:149–247.

    Article  Google Scholar 

  • Schlunderberg, D. C, R. L. Whitelaw, and R. W. Carlson (1961), “Gaseous suspension-a New Reactor Coolant,” Nucleonics, 19:67–8, 70-2, 7

    Google Scholar 

  • Singh, A. (1968), Ph.D. Thesis, University of Minnesota.

    Google Scholar 

  • Sohn, C. W., and M. M. Chen (1984), “Heat Transfer Enhancement in Laminar Slurry Pipe Flow with Power Law Thermal Conductivities,” accepted for publication, J. of Heat Transfer.

    Google Scholar 

  • Sohn, C. W., and M. M. Chen (1981), “Mcroconvective Thermal Conductivity in Disperse Two Phase Mixtures as Observed in a Low Velocity Couette Flow Experiment,” J. Heat Transfer, 103-47-51.

    Google Scholar 

  • Soo, S. L. (1962), Proc. Symp. on Interaction between Fluids and Particles, Inst. of Chem. Engrs., London, p. 50.

    Google Scholar 

  • Soo, S. L. (1967), Fluid Dynamics of Multiphase Systems, Blaisdell, Waltham, Mass.

    Google Scholar 

  • Soo, S. L. (1969), Advanced Heat Transfer, B. T. Chao, Ed., University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Soo, S. L. (1983), Multiphase Fluid Dynamics, S. L. Soo Associates, 2020 Curaton Dr., Urbana, IL 61801.

    Google Scholar 

  • Soo, S. L. (1962), Proc, Symp. on Interaction between Fluids and Particles, Inst. of Chem. Engrs., London, p. 50

    Google Scholar 

  • see also Soo, S. L. (1983), Multiphase Fluid Dynamics, S. L. Soo, Associates, Pub. (2020 Cureton Drive, Urbana, IL 61801).

    Google Scholar 

  • Tennekes, H., and J. L. Lumley (1972), A First Course in Turbulence, The MIT Press, Cambridge.

    Google Scholar 

  • Thring, R. H. (1977), “Fluidized Bed Combustion for the Stirling Engine,” Int. J. Heat Mass Transfer, 20:911–918.

    Article  ADS  Google Scholar 

  • Tien C. L. (1961), “Heat Transfer by Turbulently Flowing Fluid-solids Mixtures in a Pipe,” J. Heat Transfer, C83.183–8.

    Article  Google Scholar 

  • Van Heerden, L., P. Nobel, and D. W. Van Krerilen (1953), Ind. Eng. Chem.,45:1237.

    Article  Google Scholar 

  • Van Velzen, D., H. J. Flamm, H. Langenkamp, and E. Casile (1974), “Motion of Solids in Spouted Beds,” Can. J. Chem. Eng., 52:156–161.

    Article  Google Scholar 

  • Vortmeyer, D. (1978), “Radiation in Packed Solids,” VI Int. Heat Transfer Conf. Proc, Toronto, 525-539.

    Google Scholar 

  • Wasan, D. T., and M. S. Ahluwalia (1969), Chem. Eng. Sci., 24:1535.

    Article  Google Scholar 

  • Wen, C. Y., and L. H. Chen (1984), “Flow Modeling Concepts of Fluidized Beds,” in Handbook of Fluids in Motion, N. Cheremisinoff and R. Gupta, Eds., 665-691, Butterworths, Boston.

    Google Scholar 

  • Werther, J., and O. Molerus (1973), “The Local Structure of Gas Fluidized Beds—II. The Spatial Distribution of Bubbles,” Int. J. Multiphase Flow, 1:123–138.

    Article  Google Scholar 

  • Whitaker, S. (1967), “Diffusion and Dispersion in Porous Media,” AIChE J., 13:420–427.

    Article  Google Scholar 

  • Whitehead, A. B., G. Gartside, and D. C. Dent (1976), “Fluidization Studies in Large Gas-Solid Systems, Part III. The Effect of Bed Depth and Fluidizing Velocity on Solids Circulation Pat-terns,” Powder Technology, 14:61–70.

    Article  Google Scholar 

  • Wunschmann, J., and E. V. Schlunder (1975), Trans. Int. Conf. Heat Trans., CT2.1, 49.

    Google Scholar 

  • Yagi, S., and D. Kunii (1957), “Studies on Effective Conductivity in Packed Beds,” AIChE J., 3:373–81.

    Article  Google Scholar 

  • Yong, J., Y. Zheging, Li Zhang, and W. Zhanwan (1980, “A Study of Particle Movement in a Gas Fluidized Bed,” Proc. Intl. Conf. on Fluidization, Henniker, NJ, 365-372.

    Google Scholar 

  • Ziegler, E. N., and W. T. Brazelton (1964), “Mechanism of Heat Transfer to a Surface,” Ind. Eng. Chem. Fund., 3:94–8.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, M.M. (1988). Solids Motion and Heat Transfer in Gas Fluidized Beds. In: Kreith, F., Boehm, R.F. (eds) Direct-Contact Heat Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30182-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-30182-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-30184-5

  • Online ISBN: 978-3-662-30182-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics