Skip to main content

Direct-Contact Condensation

  • Conference paper
Direct-Contact Heat Transfer

Abstract

This paper reviews the four basic types of direct-contact condensation schemes, which have been called “drop type,” “jet and sheet type,” “film type,” and “bubble type” and classifies typical equipment that falls under the classifications. Next, it reviews the current state of our ability to analyze the processes and points out the uncertainties related to our knowledge of the basic mechanisms. In doing so, it points out the needed additional research that should be carried out in order to optimize the design of engineering equipment based upon the various condensation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hausbrand, E. Evaporating Condensing, and Cooling Apparatus. Fifth English Edition, Van Nostrand, New York (1933).

    Google Scholar 

  2. How, H. How to Design Barometric Condensers. Chemical Engineering, pp. 174-182 (Feb. 1956).

    Google Scholar 

  3. Fair, J. R. Designing Direct Contact Coolers/Condensers. Chemical Engineering, pp. 91-100 (June 1972).

    Google Scholar 

  4. Jacobs, H. R., H. Fannir. Direct Contact Condensers—A Literature Survey. Report DGE/152S-S to the U.S.E.R.D.A., Division of Geothermal Energy, University of Utah (Feb. 1977).

    Google Scholar 

  5. Oliker, I., V. A. Permyakov. Thermal Deareation of Water in Thermal Power Plants, Ener-giya, Leningrad, U.S.S.R. (1971).

    Google Scholar 

  6. Oliker, I. Application of Direct Contact Heat Exchangers in Geothermal Systems. ASME Paper No. 77-HT-S (1977).

    Google Scholar 

  7. Goldstick, R. J., KVB, Inc. Survey of Flue Gas Condensation Heat Recovery Systems. GRI 80/0152, The Gas Research Institute, Chicago, IL (1981).

    Google Scholar 

  8. Vallario, R. W., D. E. DeBellis. State of Technology of Direct Contact Heat Exchanging, U.S.D.O.E. Report No. PNL-5008, Pacific Northwest Laboratories, Battelle Memorial Institute, Richland, WA (May 1984).

    Google Scholar 

  9. Fisher, E. M., J. D. Wright. Direct Contact Condensers for Solar Pond Production. U.S.D.O.E. Report SERI/TR-252-2164, Solar Energy Research Institute, Golden, CO (May 1984).

    Google Scholar 

  10. Bharathan, D., J. A. Althof, B. K. Parsons. Direct Contact Condensers for Open-Cycle Ocean Thermal Energy Conversion. U.S.D.O.E. Report No. SERI/RR-252-2472, Solar Energy Research Institute, Golden, CO (April 1985).

    Google Scholar 

  11. Bharathan, D., J. Althof. An Experimental Study of Steam Condensation on Water in Coun-tercurrent Flow in the Presence of Inert Gases. ASME Paper 84-WA/Sol-25.

    Google Scholar 

  12. Sideman, S., D. Moalem-Maron. Direct Contact Condensation. Advances in Heat Transfer, Vol. 15, Academic Press, Inc., New York, NY, pp. 227–281 (1982).

    Google Scholar 

  13. Jacobs, H. R. Direct Contact Condensers. Section 2.6.8., Supplement No. 2 of Heat Exchanger Design Handbook, Hemisphere Press (1985).

    Google Scholar 

  14. Kutateladze, S. S., V. H. Borishanskii. A Concise Encyclopedia of Heat Transfer, Academic Press (1966).

    Google Scholar 

  15. Ford, J. D., A. Lekic. Rate of Growth of Drops During Condensation. Internat. Journal of Heat and Mass Transfer 16:61–66 (1973).

    Article  Google Scholar 

  16. Jacobs, H. R., D. S. Cook. Direct Contact Condensation on a Non-Circulating Drop. Proceedings of the 6th Internat. Heat Transfer Conf., Heat Transfer 1978, 3:389–393, Toronto, Canada (Aug. 1978).

    Google Scholar 

  17. Kulik, E., E. Rhodes. Heat Transfer Rates to Moving Droplets in Air/Steam Mixtures. Proceedings of the 6th Internat. Heat Transfer Conf., Heat Transfer 1978, 1:469-474, Toronto, Canada (Aug. 1978).

    Google Scholar 

  18. Chung, J. N., P. S. Ayyaswamy. Material Removal Associated with Condensation on a Droplet in Motion. Internat. Journal of Multiphase Flow 7:329–342 (1981).

    Article  MATH  Google Scholar 

  19. Sundararajan, T., P. S. Ayyaswamy. Hydrodynamics and Heat Transfer Associated with Condensation on a Moving Drop: Solutions for Intermediate Reynolds Numbers. Journal of Fluid Mechanics, 149:33–58 (1984).

    Article  ADS  MATH  Google Scholar 

  20. Sundararajan, T., P. S. Ayyaswamy. Numerical Evaluation of Heat and Mass Transfer to a Moving Liquid Drop Experiencing Condensation. To appear in Numerical Heat Transfer in 1985.

    Google Scholar 

  21. Sundararajan, T., P. S. Ayyaswamy. Heat and Mass Transfer Associated with Condensation on a Moving Drop: Solutions for Intermediate Reynolds Numbers by a Boundary Layer Formulation. To appear in the ASME Journal of Heat Transfer in 1985.

    Google Scholar 

  22. Grace, J. R. Hydrodynamics of Liquid Drops in Immiscible Liquids. Handbook of Fluids in Motion, Chapter 38, Ed. N. P. Cheremisinoff and R. Gupta, Ann Arbor Science, The Butter-worth Group, Ann Arbor, MI (1983).

    Google Scholar 

  23. Brown, G. Heat Transmission During Condensation of Steam on a Spray of Water Drops. Institution of Mechanical Engineers, General Discussion on Heat Transfer, pp. 49-51 (1951).

    Google Scholar 

  24. Isachenko, V. P., V. I. Kushnyrev. Condensation in Dispersed Liquid Sprays. Fifth Internat. Heat Transfer Conf., Vol. III, pp. 217–220 (1974).

    Google Scholar 

  25. Oliker, I. On Calculation of Heat and Mass Transfer in Jet Type Direct Contact Heaters. ASME Paper No. 76-HT-21, St. Louis, MO (Aug. 1976).

    Google Scholar 

  26. Kutateladze, S. S. Heat Transfer in Condensing and Boiling. Chapter 7, Moscow, U.S.S.R. (1952).

    Google Scholar 

  27. Hasson, D., D. Luss, R. Peck. Theoretical Analyses of Vapor Condensation on Laminar Jets. Internat. Journal of Heat and Mass Transfer 7:969–981 (1964).

    Article  MATH  Google Scholar 

  28. Hasson, D., D. Luss, V. Navon. An Experimental Study of Steam Condensing on a Laminar Water Sheet. Internat. Journal of Heat and Mass Transfer 7:983–1001 (1964).

    Article  Google Scholar 

  29. Jacobs, H. R., R. Nadig. Condensation on Coolant Jets and Sheets. ASME Paper No. 84-HT-29, Niagara Falls, NY, (Aug. 1984).

    Google Scholar 

  30. Taitel, Y., A. Tamir. Condensation in the Presence of a Noncondensable Gas in Direct Contact. Internat. Journal of Heat and Mass Transfer 12:1157–1169 (1969).

    Article  Google Scholar 

  31. Nadig, R., H. R. Jacobs. Condensation on Coolant Jets and Sheets in the Presence of Non-Condensable Gases. ASME Paper 84-HT-28, Niagara Falls, NY (Aug. 1984).

    Google Scholar 

  32. Jacobs, H. R., J. A. Bogart. Condensation on Immiscible Falling Films. ASME Paper No. 80-HT-110, Orlando, FL (July 1980).

    Google Scholar 

  33. Jacobs, H. R., J. A. Bogart, R. W. Pensel. Condensation on a Thin Film Flowing Over an Adi-abatic Sphere. Proceedings of the 7th Internat. Heat Transfer Conf., Heat Transfer 1982, 5:89–94, Munich, Germany (1982).

    Google Scholar 

  34. Jacobs, H. R., R. Nadig. Condensation on an Immiscible Falling Film in the Presence of a Non-Condensible Gas. Heat Exchangers for Two-Phase Applications, HTD-ASME 27:99-106 (July 1983).

    Google Scholar 

  35. Bharathan, D., J. Althof. An Experimental Study of Steam Condensation on Water in Coun-tercurrent Flow in Presence of Inert Gases. ASME Paper 84-WA/Sol-25, New Orleans, LA (Dec. 1984).

    Google Scholar 

  36. Thomas, K. D., H. R. Jacobs, R. F. Boehm. Direct Contact Condensation of Immiscible Fluids in Packed Beds. Condensation Heat Transfer, ASME, pp. 103-110 (Aug. 1979).

    Google Scholar 

  37. Tamir, A. and Rachmilev. Direct Contact Condensation of an Immiscible Vapor on a Thin Film of Water. Internat. Journal of Heat and Mass Transfer 17:1241–1251 (1974).

    Article  Google Scholar 

  38. Finklestein, Y., A. Tamir. Interfacial Heat Transfer Coefficients of Various Vapors in Direct Contact Condensation. The Chemical Engineering Journal 12:199–209 (1976).

    Article  Google Scholar 

  39. Nadig, R. Private communication with R. Nadig, 1985.

    Google Scholar 

  40. Murty, N. S., V. M. K. Sastri. Condensation on a Falling Laminar Liquid Film. Proceedings of the 5th Internat. Heat Transfer Conf., Heat Transfer 1974, 3:231–235 (Sept. 1974).

    Google Scholar 

  41. Murty, N. S., V. M. K. Sastri. Condensation on a Falling Laminar Liquid Sheet. Canadian Journal of Chemical Engineering 54:633–635 (1976).

    Google Scholar 

  42. Rao, V. D., P. K. Sarma. Condensation Heat Transfer on Laminar Liquid Film. ASME Journal of Heat Transfer 106:518–523 (Aug. 1984).

    Article  Google Scholar 

  43. Nadig, R. Design Studies for Direct Contact Condensers With and Without Noncondensable Gas. Ph.D. Dissertation, University of Utah, Salt Lake City, UT (Dec. 1984).

    Google Scholar 

  44. Jacobs, H. R., H. Fannir, G. C. Beggs. Collapse of a Bubble of Vapor in an Immiscible Liquid. Proceedings of the 6th Internat. Heat Transfer, Heat Transfer 1978, 3:383-388, Toronto, Canada (Aug. 1978).

    Google Scholar 

  45. Florschuetz, L. W., B. T. Chao. On the Mechanics of Vapor Bubble Collapse. ASME Journal of Heat Transfer 87:209–220 (1965).

    Article  Google Scholar 

  46. Isenberg, J., D. Moalem-Maron, S. Sideman. Direct Contact Heat Transfer with Change of Phase: Bubble Collapse with Translatory Motion in Single and Two-Component Systems. Proceedings of the 4th Internat. Heat Transfer Conf., Vol. 5, Paper B2.5 (1970).

    Google Scholar 

  47. Isenberg, J., S. Sideman. Direct Contact Heat Transfer with Change of Phase: Bubble Condensation in Immiscible Liquids. Internat. Journal of Heat and Mass Transfer 13:997–1011 (1970).

    Article  Google Scholar 

  48. Jacobs, H. R., B. H. Major. The Effect of Noncondensable Gases on Bubble Condensation in an Immiscible Fluid. ASME Journal of Heat Transfer 104:487–492.

    Google Scholar 

  49. Lerner, Y., H. Kaiman, R. Letan, “Condensation of an Accelerating-Decelerating Bubble: Experimental and Phenomenlogical Studies,” Basic Aspects of Two Phase Flow and Heat Transfer, ASME Symposium Volume G00S50 (1984).

    Google Scholar 

  50. Letan, R. Dynamics of Condensing Bubbles: Effect of Injection Frequency. ASME/AIChE National Heat Transfer Conf. (Aug. 1985).

    Google Scholar 

  51. Golafshani, M. Bubble Type Direct Contact Condensers. M.S. Thesis, University of Utah (1983).

    Google Scholar 

  52. Moalem-Maron, D., S. Sideman, et al. Condensation of Bubble Trains: An Approximate Solution. Progress in Heat and Mass Transfer 6:155–177 (1972).

    Google Scholar 

  53. Johnson, K. M., H. R. Jacobs, R. F. Boehm. Collapse Height for Condensing Vapor Bubbles in an Immiscible Liquid. Proceedings of the Joint ASME/JSME Heat Transfer Conf. 2:155-163, Honolulu, Hawaii (March 1983).

    Google Scholar 

  54. Sudhoff, B. Direkter Warmubergang bei der Kondensation in Blapfensaulen. Ph.D. Dissertation, Universität Dortmund, F. R., Germany (May 1982).

    Google Scholar 

  55. G. Faeth. Private communication with G. Faeth, Dept. of Aeronautical Engineering, University of Michigan, Ann Arbor, MI (July 1985).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacobs, H.R. (1988). Direct-Contact Condensation. In: Kreith, F., Boehm, R.F. (eds) Direct-Contact Heat Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30182-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-30182-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-30184-5

  • Online ISBN: 978-3-662-30182-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics