Skip to main content

Direct-Contact Evaporation

  • Conference paper
Direct-Contact Heat Transfer

Abstract

Evaporation of a liquid occurs when molecules escape from the main body of the liquid due to thermal agitation. The escaping molecules move with sufficient speed to break through the interfacial surface tension; i. e., they possess kinetic energy exceeding the work function of cohesion at the surface. Since only a small portion of the molecules is at any instant located near enough to the surface and moving in the proper direction to escape, the rate of evaporation is limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackermann, G. (1937), “Wärmeübergang und molekulare Stoffübertragung in Gleichen Feld—Grossen Temperatur und Partialdruck-Differenzen,” Forschungsheft, No. 382, pp. 1-16.

    Google Scholar 

  • Bharathan, D., Kreith, F., Schlepp, D., and Owens, W. L. (1984), “Heat and Mass Transfer in Open-Cycle OTEC Systems,” Heat Transfer Engineering, Vol. 5, No. 1-2, pp. 17–30.

    Article  ADS  Google Scholar 

  • Bharathan, D., and Penney, T. (1984), “Flash Evaporation from Turbulent Water Jets,” Journal of Heat Transfer, Vol. 106, No. 2, pp. 407–416.

    Article  Google Scholar 

  • Bikerman, J. J. (1948), Surface Chemistry, p. 81, Academic Press, New York.

    Google Scholar 

  • Colburn, A. P., and Drew, T. B. (1937), “The Condensation of Mixed Vapors,” Trans. AIChE, Vol. 33, pp. 197–215.

    Google Scholar 

  • Colburn, A. P., and Hougen, O. A. (1934), “Design of Cooler Condensers for Mixtures of Vapors with Noncondensing Gases,” Ind. Eng. Chem., Vol. 26, No. 11, pp. 1178–1182.

    Article  Google Scholar 

  • Davies, J. T. (1963), “Mass-Transfer and Interfacial Phenomena,” in Advances in Chemical Engineering, T. B. Drew, G. W. Hoopes, Jr. and T. Vermeiden, eds., Vol. 4, pp. 1–50, Academic Press, Orlando, FL.

    Google Scholar 

  • Deutsche Verfahrenstechnik. (1985), VTE-MSF Distillation Process, Graf-Adolf-Strasse 68, D-4000 Düsseldorf 1, West Germany. (Technical Brochure on DVT).

    Google Scholar 

  • Fair, J. R., and Humphrey, J. L. (1984–85), “Distillation: Research Needs,” Separation Science and Technology, Vol. 19, No. 13-15, pp. 943–961.

    Article  Google Scholar 

  • Forsythe, G. E., Malcolm, M. A., and Moler, C. B. (1977), Computer Methods for Mathematical Computations, Prentice-Hall Inc., Englewood Cliffs, NJ.

    Google Scholar 

  • Hertz, H. (1882), “Ueber die Verdunstung der Flüssigkeiten, insbesondere des quecksilbers, in luftleeren Räume,” Annalen der Physik und Chemie, Vol. 17, No. 10, pp. 177–200.

    ADS  Google Scholar 

  • Knudsen, M. (5 Aug 1915), “Die maximale Verdampfungsgeschwindigkeit des quecksilbers,” Annalen der Physik, Vol. 47, No. 13, pp. 697–708.

    Article  ADS  Google Scholar 

  • Langmuir, I. (1913), “The Vapor Pressure of Metallic Tungsten,” Physical Review, Vol. 2, pp. 329–342.

    Article  ADS  Google Scholar 

  • Levich, V. G., and Krylov, V. S. (1969), “Surface-Tension-Driven Phenomena,” Annual Review of Fluid Mechanics, W. R. Sears and M. Van Dyke, eds., Vol. 1, p. 293-316, Annual Reviews, Inc., Palo Alto, CA.

    Google Scholar 

  • Maa, J. R. (1967), “Evaporation Coefficients of Liquids,” Ind. Eng. Chem. Fundam., Vol. 6, No. 4, pp. 504–518.

    Article  Google Scholar 

  • Majumdar, A. K., Singhal, A. K., and Spalding, D. B. (l983)(Mar), VERA 2D-A Computer Program for Two-Dimensional Analysis of Flow, Heat and Mass Transfer in Evaporative Cooling Towers, Vols. 1 & 2, EPRI Report CS-2923, Electric Power Research Institute, Palo Alto, CA.

    Google Scholar 

  • Malik, M. A. S., Tiwari, G. N., Kumar, A., and Sodha, M. S. (1982), Solar Distillation, Pergamon Press, New York.

    Google Scholar 

  • Merkel, F. (1925), “Verdunstungskühlung,” VDI Forschungsarbeiten, No. 275, Berlin.

    Google Scholar 

  • Parsons, B. P., Bharathan, D., and Althof, J. A. (l984)(Jun), Open-Cycle OTEC Thermal-Hydraulic Systems Analysis and Parametric Studies, SERI/TP-252-2330, Solar Energy Research Institute, Golden, CO.

    Google Scholar 

  • Schräge, R. W. (1953), A Theoretical Study of Interphase Mass Transfer, Columbia Univ., New York.

    Google Scholar 

  • Sherwood, T. K., Pigford, R. L., and Wilke, C. R. (1975), Mass Transfer, McGraw-Hill, New York.

    Google Scholar 

  • Sherwood, T. K., and Wei, J. C. (1957)(June), “Interfacial Phenomena in Liquid Extraction,” Industrial and Engineering Chemistry, Vol. 49, No. 6, pp. 1030–1034.

    Article  Google Scholar 

  • Watt, J. R. (1963), Evaporative Air Conditioning, The Industrial Press, New York.

    Google Scholar 

  • Yeager, K. (1983)(Dec), “Coal Combustion Systems Division R&D Status Report,” EPRI Journal, Vol. 8, No. 10, pp. 45–52.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bharathan, D. (1988). Direct-Contact Evaporation. In: Kreith, F., Boehm, R.F. (eds) Direct-Contact Heat Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-30182-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-30182-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-30184-5

  • Online ISBN: 978-3-662-30182-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics