Advertisement

Surface Chemistry and Bonding of Plasma-Aminated Polyaramid Filaments

  • Ronald E. Allred
  • Edward W. Merrill
  • David K. Roylance
Part of the Polymer Science and Technology book series (PST)

Abstract

Thermomechanical performance of polyaramid-reinforced, resin-matrix composites often is limited by poor adhesion in the filament-matrix interphase region. This study describes a method to improve adhesion by forming covalent bonds across the interface through amine functional groups. Amine functionality has been introduced onto poly(p-phenylene terephthalamide), PPTA, filaments by exposure to ammonia or monomethyl amine RF glow discharge plasmas. Surface amine concentration rises rapidly upon plasma exposure and reaches a steady state in 30 to 60 sec. Weibull parameters for the filament strength distribution are unchanged by the plasma amination reaction. The amine groups are stable in air and water. They may be reacted directly with epoxide resins, or modified to functionalities that can react with other polymer matrix materials.

PPTA/epoxy laminates reinforced with aminated fabric have higher interlaminar tensile and peel strengths than laminates reinforced with untreated fabric. The failure mode changes from interphase dominated to a mixture of filament splitting and matrix cracking as surface amine concentration increases. Moisture absorption of untreated PPTA fabric/epoxy laminates occurs by a non-Fickian interfacial wicking mechanism. After amination, the absorption rate is reduced by a factor of three and occurs by a Fickian bulk diffusion mechanism. These results indicate that the mechanical properties and environmental resistance of polyara-mid-reinforced composites may be improved by covalent bonding at the filament-matrix interface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. E. Allred, ScD Thesis, Massachusetts Institute of Technology, Cambridge, MA, February 1983.Google Scholar
  2. 2.
    L. J. Broutman, “Modern Composite Materials,” L. J. Broutman and R. H. Krock, eds., Addison-Wesley, Reading, MA (1967) pp. 337–411.Google Scholar
  3. 3.
    L. B. Gresczuk, in “Interfaces in Composites,” ASTM STP 452, Am. Soc. Testing and Materials, Phil, PA (1969) pp. 42–58.CrossRefGoogle Scholar
  4. 4.
    C. C. Chamis, in “Interfaces in Polymer Matrix Composites,” E. P. Pluddemann, ed., Academic Press, New York (1974), pp. 31–77.Google Scholar
  5. 5.
    G. B. McKenna, Poly.-Plast. Tech. and Engr., 5, 123 (1975).Google Scholar
  6. 6.
    S. W. Tsai and H. T. Hahn, in “Adhesion and Absorption of Polymers,” L. H. Lee, ed., Plenum Press, New York (1979), pp. 463–472.Google Scholar
  7. 7.
    D. H. Kaelble, “Physical Chemistry of Adhesion,” John Wiley & Sons, New York (1971).Google Scholar
  8. 8.
    D. A. Scola, in “Interfaces in Polymer Matrix Composites,” E. P. Plueddemann, ed., Academic Press, New York (1974) pp. 217–284.Google Scholar
  9. 9.
    A. T. DiBenedetto and L. Nicolais, “Advances in Composite Materials,” G. Piatti, ed., Applied Science, London (1978) pp. 153–181.Google Scholar
  10. 10.
    S. Wu, “Polymer Interface and Adhesion,” Marcel Dekker, New York, (1982).Google Scholar
  11. 11.
    W. A. Zisman, in “Adhesion and Cohesion,” P. Weiss, ed., Elsevier, Amsterdam (1962) pp. 176–208.Google Scholar
  12. 12.
    E. P. Pluddemann, “Interfaces in Polymer Matrix Composites,” E. P. Pluddemann, ed., Academic Press, New York (1974) pp. 173–216.Google Scholar
  13. 13.
    D. M. Riggs, R. J. Shuford and R. W. Lewis, in “Handbook of Composites,” G. Lubin, ed., Van Nostrand Reinhold, New York (1982) pp. 196–271.CrossRefGoogle Scholar
  14. 14.
    N. B. Moore, P. S. Bruno and S. C. Browning, Proc. AIAA/SAE 10th Propulsion Conf., Am. Inst. Aero and Astro, New York, (1974), paper 74–1208.Google Scholar
  15. 15.
    L. L. Clements, R. L. Moore, E. T. Mones and T. T. Chaio, Lawrence Livermore Laboratory Report UCID-16747, Livermore, CA (April 1975).Google Scholar
  16. 16.
    L. L. Clements and T. T. Chaio, Composites, 87 (1977).Google Scholar
  17. 17.
    C. F. Griffin, L. D. Fogg, R. L. Stone and E. G. Dunning, Natl. Aero. and Space Admin. Report NASA CR-14370 (July 1978).Google Scholar
  18. 18.
    R. E. Allred, H. K. Street, and R. J. Martinez, Proc. 24th Natl. SAMPE Symp. and Exhib., Soc. Adv. Matl. and Process Engr., Azusa, CA, 31 (1979).Google Scholar
  19. 19.
    V. A. Chase, Whittaker Corp. Report, Naval Air Systems Command Contract N00019–74-C-0055 (Jan. 1975).Google Scholar
  20. 20.
    C. C. Chaio, R. L. Moore and T. T. Chaio, Composites 161 (1977).Google Scholar
  21. 21.
    L. L. Clements, Proc. 1977 Flywheel Tech. Symp., Dept. of Energy, Wash., DC (1977).Google Scholar
  22. 22.
    P. Ehrburger and J. B. Donnet, “New Fibres and Their Composites,” The Royal Soc, London (1980) pp. 87–97.Google Scholar
  23. 23.
    R. J. Morgan, E. T. Mones, W. J. Steele, and S. B. Deutscher, “Proc. 12th Natl. SAMPE Tech. Conf..” Soc. Adv. Matl. and Process Engr., Azusa, CA (1980).Google Scholar
  24. 24.
    E. M. Wu, Wash, U., St. Louis, Report AMMRC-TR-80–19 (April, 1980).Google Scholar
  25. 25.
    R. E. Allred and D. K. Roylance, J. Mat. Sci., 18, 652 (1983).ADSCrossRefGoogle Scholar
  26. 26.
    L. T. Drzal, M. J. Rich and P. F. Lloyd, Polym. Preprints, Am. Chem. Soc, 22, 199 (1981).Google Scholar
  27. 27.
    J. H. Greenwood and P. G. Rose, J. Mat. Sci., 9, 1809 (1974).ADSCrossRefGoogle Scholar
  28. 28.
    S. V. Kulkarni, J. S. Rice and B. W. Rosen, Composites, 217 (1975).Google Scholar
  29. 29.
    R. E. Allred and A. M. Lindrose, “Composite Materials: Testing and Design,” ASTM STP 674, Am. Soc. for Testing and Matls, Phil., PA (1979) pp. 313–323.Google Scholar
  30. 30.
    W. S. Smith, Proc. Conf. on Advanced Composites-Special Topics, Technology Conferences, El Segundo, CA (1979).Google Scholar
  31. 31.
    R. E. Allred, J. Composite Mat., 15, 100 (1981).ADSCrossRefGoogle Scholar
  32. 32.
    M. R. Wertheimer and H. P. Schreiber, J. Appl. Poly. Sci., 26, 2087 (1981).CrossRefGoogle Scholar
  33. 33.
    E. M. Petrie and J. C. Chottiner, Proc 40th Annual SPE Tech. Conf. and Exhib.: ANTEC ‘82, Soc. Plast. Engr., St. Louis, MO 777 (May 1982).Google Scholar
  34. 34.
    L. S. Penn, F. A. Bystry and H. J. Marchionni, Poly. Composites, in press (1983).Google Scholar
  35. 35.
    T. S. Keller, A. S. Hoffman, B. D. Ratner and B. J. McElroy, “Physicochemical Aspects of Polymer Surfaces,” Plenum (1982).Google Scholar
  36. 36.
    J. R. Hollahan, B. B. Stafford, R. D. Falb, and S. T. Payne, J. Appl. Poly. Sci., 13, 807 (1969).CrossRefGoogle Scholar
  37. 37.
    G. C. S. Collins, A. C. Lowe and D. Nicholas, European Poly. J., 9, 1173 (1973).CrossRefGoogle Scholar
  38. 38.
    E. L. Lawton, J. Appl. Poly. Sci., 18, 1557 (1974).CrossRefGoogle Scholar
  39. 39.
    J. C. Goan, U. S. Patent 3,776,829, Dec. 4, 1973.Google Scholar
  40. 40.
    V. P. Ivanova, G. D. Andreevskaja, J. Friedrich and J. Gahde, Acta Poly., 31, 752 (1980).CrossRefGoogle Scholar
  41. 41.
    J. F. Evans and T. Kuwana, Anal. Chem., 51, 358 (1979).CrossRefGoogle Scholar
  42. 42.
    A. T. Bell, “Techniques and Applications of Plasma Chemistry,” J. R. Hollahan and A. T. Bell, eds., John Wiley & Sons, New York (1974) pp. 1–56.Google Scholar
  43. 43.
    B. Chapman, “Glow Discharge Processes,” John Wiley & Sons, New York (1980).Google Scholar
  44. 44.
    R. F. Gould, ed., “Chemical Reactions in Electrical Discharges,” Adv. in Chem. Series #80, Am. Chem. Soc, Wash., DC (1969).Google Scholar
  45. 45.
    M. Venugopalan, ed., “Reactions under Plasma Conditions,” Vols. 1 and 2, John Wiley and Sons, New York (1971).Google Scholar
  46. 46.
    D. T. Clark, A. Dilks and D. Shuttleworth, “Polymer Surfaces,” D. T. Clark and W. J. Feast, eds., John Wiley & Sons, New York (1978) pp. 185–211.Google Scholar
  47. 47.
    M. Hudis, “Techniques and Applications of Plasma Chemistry,” J. R. Hollahan and A. T. Bell, eds., John Wiley & Sons, New York (1974) pp. 113–147.Google Scholar
  48. 48.
    H. Yasuda, in “Plasma Chemistry of Polymers,” M. Shen, ed., Marcel Dekker, New York (1976) pp. 15–52.Google Scholar
  49. 49.
    D. J. Carsson, L. H. Gan and D. M. Wiles, J. Poly. Sci., Poly. Chem. Ed., 16, 2353 (1978).ADSCrossRefGoogle Scholar
  50. 50.
    R. d’Agostino, F. Cramarossa, S. DeBenedictis and G. Ferraro, Plasma Chem. and Plasma Processing, 1, 19 (1981).CrossRefGoogle Scholar
  51. 51.
    M. Capitelli and E. Molinari, “Topics in Current Chemistry,” 90, Springer-Verlag, New York (1980) pp. 59–109.Google Scholar
  52. 52.
    L. Penn and F. Larsen, J. Appl. Poly. Sci., 23, 59 (1979).CrossRefGoogle Scholar
  53. 53.
    P. W. Morgan, Macromolecules, 10, 1381 (1977).ADSCrossRefGoogle Scholar
  54. 54.
    T. I. Bair, P. W. Morgan and F. L. Killian, Macromolecules, 10, 1396 (1977).ADSCrossRefGoogle Scholar
  55. 55.
    Standard Test Methods, Part 36, Am. Soc. for Testing and Matls., Phil, PA (1980).Google Scholar
  56. 56.
    W. S. Smith, E. I. duPont de Nemours, Wilmington, DE, private communication.Google Scholar
  57. 57.
    C. Hendrick, G. Grant and J. Howard, Millipore Corp., Bedford, MA, unpublished results.Google Scholar
  58. 58.
    R. E. Allred and N. H. Hall, Poly Engr. and Sci., 19, 907 (1979).CrossRefGoogle Scholar
  59. 59.
    Standard Test Methods, Part 38, Am. Soc. for Testing and Matls., Phil., PA (1980).Google Scholar
  60. 60.
    K. D. Boultinghouse, Sandia National Laboratories Report SAND 80–0975 (June 1980), available NTIS.Google Scholar
  61. 61.
    A. W. Adamson, “Physical Chemistry of Surfaces,” John Wiley & Sons, New York (1976).Google Scholar
  62. 62.
    D. T. Clark, in “Characterization of Metal and Polymer Surfaces: Vol. 2,” L.-H. Lee, ed., Academic Press, New York (1977) pp. 5–51.CrossRefGoogle Scholar
  63. 63.
    D. T. Clark, in “Polymer Surfaces,” D. T. Clark and W. J. Feast, eds., John Wiley & Sons, New York (1978) pp. 309–351.Google Scholar
  64. 64.
    R. Holm and S. Storp, Surf. Interface Anal., 2, 96 (1980).CrossRefGoogle Scholar
  65. 65.
    D. T. Clark and A. Dilks, in “Characterization of Metal and Polymer Surfaces: Vol. 2,” L.-H. Lee, ed., Academic Press, New York (1977) pp. 101–132.CrossRefGoogle Scholar
  66. 66.
    H. Yasuda, H. C. Marsh, S. Brandt, and C. N. Reilley, J. Poly. Sci., Poly. Chem., 15, 991 (1977).CrossRefGoogle Scholar
  67. 67.
    J. A. Tyalor, Physical Electronics Laboratories, Eden Prairie, MN, communication to J. R. Martin, MIT, March 1981.Google Scholar
  68. 68.
    D. T. Clark and A. Harrison, J. Poly. Sci., Poly. Chem., 19, 1945 (1981).CrossRefGoogle Scholar
  69. 69.
    C. Y. Kim, J. Evans and D. A. I. Goring, J. Appl. Poly. Sci., 15, 1365 (1971).CrossRefGoogle Scholar
  70. 70.
    D. Briggs, D. G. Rance, C. R. Kendall and A. R. Blythe, Polymer 21, 895 (1980).CrossRefGoogle Scholar
  71. 71.
    A. K. Sharma, F. Millich and E. W. Hellmuth, J. Appl. Poly. Sci., 26, 2205 (1981).CrossRefGoogle Scholar
  72. 72.
    S. P. Wesson and A. Tarantino, J. Non-Cryst. Solids, 38/39, 619 (1980).ADSCrossRefGoogle Scholar
  73. 73.
    S. L. Phoenix and E. M. Wu, presented at the IUTAM Symp. on Mech. Compos. Matls, Blacksburg, VA, Aug. 16–19, 1982.Google Scholar
  74. 74.
    S. L. Phoenix, Cornell University, private communication.Google Scholar
  75. 75.
    C. R. Noller, Chemistry of Organic Compounds, W. B. Saunders Co., London (1966).Google Scholar
  76. 76.
    M. G. Northolt, European Poly. J., 10, 799 (1974).CrossRefGoogle Scholar
  77. 77.
    S. P. Wesson, Owens-Corning Technical Center, Granville, OH, unpublished data.Google Scholar
  78. 78.
    P. Avakian, R. C. Blume, T. D. Gierke, H. H. Yang and M. Panar, Polym. Preprints, Am. Chem. Soc, 21, 9 (1980).Google Scholar
  79. 79.
    M. G. Bader, J. E. Bailey and I. Bell, J. Phys. D: Appl. Phys., 6, 572 (1973).ADSCrossRefGoogle Scholar
  80. 80.
    T. U. Marston, A. G. Atkins and D. K. Felbeck, J. Mat. Sci., 9, 447 (1974).ADSCrossRefGoogle Scholar
  81. 81.
    J. M. Augl, Naval Surface Weapons Center Report NKSWC/TR-79–51, Silver Spring, MD (March 1979), available NTIS.Google Scholar
  82. 82.
    J. Crank and G. S. Park, eds., “Diffusion in Polymers,” Academic Press, New York (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Ronald E. Allred
    • 2
  • Edward W. Merrill
    • 1
  • David K. Roylance
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Division 1812Sandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations