Advertisement

The Role of the Interface in Polymer Composites — Some Myths, Mechanisms, and Modifications

  • J. L. Kardos
Part of the Polymer Science and Technology book series (PST)

Abstract

A considerable effort has been made over the past 20 years to understand the reinforcement-matrix interface, to control it, and even to specifically modify it. It is at the interface where stress concentrations develop because of differences between thermal expansion coefficients of the reinforcement and matrix phases, because of loads applied to the structure, and because of cure shrinkage (in thermosetting matrices) and crystallization (in some thermoplastic matrices). The interface can also serve as a nucleation site, a preferential adsorption site, and a locus of chemical reaction. This paper attempts to clarify some common misconceptions regarding the effects of interfacial adhesion on mechanical properties including stiffness and toughness, the presence of covalent bonding of silanes to glass fibers, and the characterization of thermal stability of a polymeric composite. Two specific approaches to interface modification are also discussed, one for thermoplastic matrices and one for thermosetting matrices.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Kenyon and H. J. Duffy, Polym. Eng. Sci., 7, 1 (1970).Google Scholar
  2. 2.
    A. S. Kenyon, J. Colloid Interfac. Sci., 27, 761 (1968).CrossRefGoogle Scholar
  3. 3.
    A. Wambach, K. Trachte, and A. T. DiBenedetto, J. Comp. Mater., 2, 266 (1968).CrossRefGoogle Scholar
  4. 4.
    A. T. DiBenedetto and A. D. Wambach, Intern. J. Polymerie Mater., 1, 159 (1972).CrossRefGoogle Scholar
  5. 5.
    K. L. Trachte and A. T. DiBenedetto, Intern. J. Polymeric Mater., 1, 75 (1971).CrossRefGoogle Scholar
  6. 6.
    A. G. Atkins, J. Mater. Sci., 10, 819 (1975).ADSCrossRefGoogle Scholar
  7. 7.
    T. Jones, N. P. Suh, and N.-H. Sung, Preprints, 34th Annual Tech. Conf., Soc. Plast. Engrs., Atlantic City, April 26, 1976, p. 458.Google Scholar
  8. 8.
    R. L. Kaas and J. L. Kardos, Polymer Eng. Sci., 11, 11 (1971).CrossRefGoogle Scholar
  9. 9.
    R. L. Kaas and J. L. Kardos, Preprints, 34th Annual Tech. Conf., Soc. Plast. Engrs., Atlantic City, April 26, 1976, p. 22.Google Scholar
  10. 10.
    A. N. Gent and E. C. Hsu, Macromolecules, 7(6), 933 (1974).ADSCrossRefGoogle Scholar
  11. 11.
    E. P. Plueddemann, Proc. 25th Ann. Tech. Conf., Reinf. Plastics Div., SPI, Section 13-D (1970).Google Scholar
  12. 12.
    J. L. Koenig and P. T. K. Shih, J. Colloid Interface Sci., 36, 247 (1971).CrossRefGoogle Scholar
  13. 13.
    H. Ishida and J. L. Koenig, J. Colloid Interface Sci., 64, 555 (1978).CrossRefGoogle Scholar
  14. 14.
    C. H. Chiang and J. L. Koenig, Pol. Comp., 2, 192 (1981).CrossRefGoogle Scholar
  15. 15.
    J. L. Kardos, Trans. N. Y. Acad. Sci., 35, 136 (1973).CrossRefGoogle Scholar
  16. 16.
    A. S. Kenyon and L. E. Nielsen, J. Macromol. Sci.-Chem., A3, 275 (1969).CrossRefGoogle Scholar
  17. 17.
    R. E. Cuthrell, J. Appl. Pol. Sci., 12, 1263 (1968).CrossRefGoogle Scholar
  18. 18.
    F. S. Cheng, J. L. Kardos, and T. L. Tolbert, SPEJ, 26, 62 (1970).Google Scholar
  19. 19.
    J. L. Kardos, J. Adhesion, 4, 1 (1972).CrossRefGoogle Scholar
  20. 20.
    R. E. Lavengood and M. J. Michno, Jr., Proc. Div. Techn. Conf., Engrg. Props. and Structure Div., Society of Plastics Engineers, 1975, p. 127.Google Scholar
  21. 21.
    L. D. Tryson and J. L. Kardos, Preprints 36th Ann. Conf., Reinforced Plast./Comp. Inst., SPI, Section 2-E, 1 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. L. Kardos
    • 1
  1. 1.Materials Research Laboratory and Department of Chemical EngineeringWashington UniversityUSA

Personalised recommendations