Advertisement

Abstract

The experiment of Chapter 1 (page 6, cf. also Fig. 3) and a large number of experimental data which will be discussed in the following chapters demonstrate that solutes leave the bed of a granulated gel in the order of decreasing molecular weight as long as they have been applied jointly as a zone and have been washed through the column by the eluent. What happens in the gel bed is more easily understood if one assumes the following for diffusion equilibrium: The solvent in the swollen gel particles is not equally well accessible for molecules of different size (cf. Fig. 1). Only the solvent between the gel particles is flowing, and only its solutes will be advanced more rapidly than the smaller molecules which are in diffusion equilibrium with the resting gel phase (cf. Fig. 2).

Keywords

Hyaluronic Acid Elution Volume Exclusion Principle Diffusion Equilibrium Partial Specific Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flodin, P.: J. Chromatog. 5, 103 (1961).CrossRefGoogle Scholar
  2. 2.
    Laurent, T. C., and J. Killander: ibid. 14, 317 (1964).Google Scholar
  3. 3.
    Granath, K. A.: J. colloid. Sci. 13, 308 (1958).CrossRefGoogle Scholar
  4. 4.
    Determann, H., und B. Gelotte in Rauen (Hrsg.): Biochemisches Taschenbuch, Band II, 906. Berlin, Göttingen, Heidelberg 1964.Google Scholar
  5. 5.
    Wheaton, R. M., and W. C. Baumann: Ann. N.Y. Acad. Sci. 57, 159 (1953). Google Scholar
  6. 6.
    Granath, K. A., and P. Flodin: Makromol. Chem. 48, 160 (1961). Google Scholar
  7. 7.
    Whitaker, J. R.: Anal. Chem. 35, 1950 (1963).CrossRefGoogle Scholar
  8. 8.
    Wicke, E.: Ber. Bunsenges. Physik. Chem. 69, 761 (1965).Google Scholar
  9. 9.
    Glueckauf, E., in: Ion exchange and its applications, Soc. Chem. Ind., 34. London 1965.Google Scholar
  10. 10.
    Purnell, G. G., in: Gas Chromatography, 108. New York: 1962.Google Scholar
  11. 11.
    Porath, J., and P. Flodin: Protides of the biol. Fluids 10, 297 (1963).Google Scholar
  12. 12.
    Smith, W. B., and A. KoLLMANSBERGER: J. phys. Chem. 69, 4157 (1965). Google Scholar
  13. 13.
    Flodin, P.: Dextran Gels and their Applications in Gel Filtration, Dissertation, Uppsala, 1962.Google Scholar
  14. 14.
    Laurent, T. C., and E. P. Laurent: J. Chromatog. 16, 89 (1964).CrossRefGoogle Scholar
  15. 15.
    Winzor, D. J., and L.W. Nichol: Biochim. biophys. Acta 104, 1 (1965). Google Scholar
  16. 16.
    Leach, A. A., and P. C. O’Shea: J. Chromatog. 17, 245 (1965). Google Scholar
  17. 17.
    Selby, K., and C. C. Maitland: Biochem. J. 94, 578 (1965). Google Scholar
  18. 18.
    Moore, J. C., and J. G. Hendrickson: J. polymer. Sci., Part C, 8, 233 (1965).CrossRefGoogle Scholar
  19. 19.
    Altgelt, K. H., and J. C. Moore: in Cantow (Ed.): Polymer Fractionation, p. 123, New York, 1967.Google Scholar
  20. 20.
    Porath, J.: Pure appl. Chem. 6, 233 (1963). Google Scholar
  21. 21.
    Zimm, B. FL, and W. H. Stockmayer: J. chem. Physics 17, 1301 (1949).CrossRefGoogle Scholar
  22. 22.
    Squire, P. G.: Arch. Biochem. Biophys. 107, 471 (1964).CrossRefGoogle Scholar
  23. 23.
    Laurent, T. C., and A. Pietruszkiewicz: Biochim. biophys. Acta 49, 258 (1961).Google Scholar
  24. 24.
    Laurent, T. C., and A. Pietruszkiewicz: Biochem. J. 89, 253 (1963).Google Scholar
  25. 25.
    Laurent, T. C., and A. Pietruszkiewicz: Acta chem. scand. 17, 2664 (1963).Google Scholar
  26. 26.
    Laurent, T. C., and A. Pietruszkiewicz: Biochem. J. 93, 106 (1964).Google Scholar
  27. 27.
    Laurent, T. C., and A. Pietruszkiewicz, K. Hellsing und B. Gelotte: Acta chem. scand. 18, 274 (1964).CrossRefGoogle Scholar
  28. 28.
    Ogstox, A. G.: Trans. Faraday Soc. 54, 1754 (1958).CrossRefGoogle Scholar
  29. 29.
    Hellsing, K.: Acta chem. scand. 19, 1791 (1965).CrossRefGoogle Scholar
  30. 30.
    Pedersen, K. O.: Arch. Biochem. Biophys., Suppl. 1, 157 (1962).Google Scholar
  31. 31.
    Ackers, G. K., and R. L. Steere: Biochim. biophys. Acta 59, 137 (1962).Google Scholar
  32. 32.
    Renkin, E. M.: J. gen. Physiol. 38, 225 (1955).Google Scholar
  33. 33.
    Ackers, G. K.: Biochemistry 3, 723 (1964).CrossRefGoogle Scholar
  34. 34.
    Siegel, L. M., and K. J. Monty: Biochim. biophys. Acta 112, 346 (1966).Google Scholar
  35. 35.
    Anderson, D. M.W., and J. F. Stoddart: Anal. chim. Acta 34, 401 (1966).CrossRefGoogle Scholar
  36. 36.
    Determann, H., und W. Michel: J. Chromatog. 25, 303 (1966).CrossRefGoogle Scholar
  37. 37.
    Takagi, T.: 3rd International Seminar on Gel Permeation Chromatography, Genf, Mai 1966.Google Scholar
  38. 38.
    BRÖNsted, J. N.: Z. physikal. Chem Bodenstein Festband 1931, 257.Google Scholar
  39. 39.
    Hohn, TH., und W. Pollmann: Z. Naturforsch. 18 b, 919 (1963).Google Scholar
  40. 40.
    Brewer, P. I.: Polymer 6, 603 (1965).CrossRefGoogle Scholar
  41. 41.
    Tiselius, A., J. PoRath, and P.-A. Aleertsson: Science 141, 13 (1963).Google Scholar
  42. 42.
    Porath, J.: Biochim. biophys. Acta 39, 193 (1960).Google Scholar
  43. 43.
    Gelotte, B.: J. Chromatog. 3, 330 (1960).CrossRefGoogle Scholar
  44. 44.
    Si Jung Yeh, and H. L. Frisch: J. polymer Sci. 27, 149 (1958).Google Scholar
  45. 45.
    Si Jung Yeh, and H. L. Frisch: J. polymer Sci. 27, 149 (1958).Google Scholar
  46. 46.
    Vaughan, M. F.: Nature 188, 55 (1960).CrossRefGoogle Scholar
  47. 47.
    Coatis-Jones, B.: Nature 191, 272 (1961).CrossRefGoogle Scholar
  48. 48.
    Marsden, N. V. B.: Ann. N.Y. Acad. Sci. 125, 428 (1965).CrossRefGoogle Scholar
  49. 49.
    Determann, H., und I. Walter: In preparation.Google Scholar
  50. 50.
    Craig, L. C., and A. Ansevix: Biochemistry 2, 1268 (1963).CrossRefGoogle Scholar
  51. 51.
    Sun, K., and A. H. Sehon: Can. J. Chem. 43, 969 (1965).CrossRefGoogle Scholar
  52. 52.
    Gelotte, B., and J. Porath: in Heftmann ( Ed.) Chromatography, New York 1966.Google Scholar
  53. 53.
    Somers, T. C.: Nature 209, 368 (1966).CrossRefGoogle Scholar
  54. 54.
    Bagdasarian, M., N. A. Matheson, R. L. M. Synge and M. A. YouNGsox: Biochem. J. 91, 91 (1964).Google Scholar
  55. 55.
    Carnegie, P. R.: Nature 206, 1128 (1965).CrossRefGoogle Scholar
  56. 56.
    Schwartz, A. N., A.W. G. Yee, and B. A. Zabin: J. Chromatog. 20, 154 (1965).CrossRefGoogle Scholar
  57. 57.
    Hayes, F. N., E. Hansbury, and V. E. Mitchell: J. Chromatog. 16, 410 (1964).CrossRefGoogle Scholar
  58. 58.
    Spitzt, H., H. Skrube und K. MÜLler: Microchim. Acta 1961, 296.Google Scholar
  59. 59.
    Posner, A. M.: Nature 198, 1161 (1963).CrossRefGoogle Scholar
  60. 60.
    George, W. H. S.: Nature 195, 155 (1962).CrossRefGoogle Scholar
  61. 61.
    Giddings, J. C., and K. L. Mallik: Anal. Chem. 38, 997 (1966).CrossRefGoogle Scholar
  62. 62.
    Fawcett, J. S., and C. J. O. R. Morris: Separation Sci. 1, 9 (1966).CrossRefGoogle Scholar
  63. 63.
    Grassmann, W., und G. Deffner: Z. physiol. Chem. 293, 89 (1953).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Helmut Determann
    • 1
  1. 1.Institut für Organische ChemieUniversität Frankfurt am MainFrankfurt am MainDeutschland

Personalised recommendations