Ernährung pp 592-733 | Cite as

Die Physiologie der Vitamine

  • Konrad Lang
Part of the Handbuch der Allgemeinen Pathologie book series (PATHOLOGIE)


Vitamine sind organische Verbindungen, welche dem tierischen Organismus mit der Nahrung entweder als solche oder in Form leicht in die eigentlichen Vitamine umwandelbarer Vorstufen (Provitamine) zugeführt werden müssen, da sie vom Organismus benötigt, aber nicht (oder nicht in ausreichendem Umfange) im eigenen Stoffwechsel erzeugt werden können. Die benötigten Vitaminmengen sind außerordentlich gering, da die Vitamine im Zellstoffwechsel gewissermaßen katalytische Funktionen ausüben. Vitamine sind durch ihre Wirkung definiert. Chemisch gehören sie zu den verschiedensten Stoffgruppen. In vielen Fällen ist die Konstitutionsspezifität recht gering. Der Ausdruck Vitamin wird daher zumeist im Sinne einer definierten biologischen Wirkung gebraucht und nicht im Sinne einer speziellen chemischen Substanz.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alaupovic, P., and B. C. Johnson: Relationship between coenzyme Q and a-tocopherol metabolites. Arch. Biochem. 84, 247 (1959).PubMedCrossRefGoogle Scholar
  2. Almquist, H. J., and A. A. Klose: Determination of the antihaemorrhagic vitamin. Biochem. J. 33, 1055 (1939).PubMedGoogle Scholar
  3. Anderson, B. M., and N. O. Kaplan: Studies with analogues of diphosphopyridine nucleotide. J. biol. Chem. 234, 1226 (1959).PubMedGoogle Scholar
  4. Arnom, D. I.: Enzymes, units of biological structure and function, S. 279. New York 1956.Google Scholar
  5. Arnstein, H. R. V.: Vitamin B12 und Intrinsic Factor, S. 86. Stuttgart 1957.Google Scholar
  6. Artom, C.: Effect of choline administration on the oxidation of fatty acids by extrahepatic tissues. J. biol. Chem. 213, 681 (1955).PubMedGoogle Scholar
  7. Bagdon, R. E., G. Zbinden and A. Studer: Chronic toxicity studies of ß-carotene. Toxicol. appl. Pharmacol. 2, 225 (1960).Google Scholar
  8. Bartley, W., H. A. Krebs and J. R. P. O’Brien Vitamin C requirement of human adults. Med. Res. Council spec. Rep. 1953, No 280.Google Scholar
  9. Basford, R. E., and D. E. Green: Studies on the terminal electron transport system Xxi und Xxii. Biochim., biophys. Acta 33, 185–195 (1959).Google Scholar
  10. Baxter, R. M., and J. H. Quastel: The enzymatic breakdown of d-biotin in vitro. J. biol. Chem. 201, 751 (1953).PubMedGoogle Scholar
  11. Beckmann, R.: Vitamin E. Z. Vitamin-, Hormon-u. Fermentforsch. 7, 153 (1955).Google Scholar
  12. Bernhauer, K., and W. Friedrich: Über die Vitamine der B12-Gruppe. Angew. Chem. 66, 776 (1954).CrossRefGoogle Scholar
  13. Bessey, O. A., O. H. Lowry and R. H. Love: The fluorometric measurements of the nucleotides of riboflavin and their concentration in tissues. J. biol. Chem. 180, 755 (1949).PubMedGoogle Scholar
  14. Best, C. H., and C. C. Lucas: Choline, chemistry and significance as a dietary factor. Vitam. and Horm. 1, 1 (1943).CrossRefGoogle Scholar
  15. Billeter, M., and C. Martius: Über die Umwandlung von Phyllochinon (Vitamin K1) und Vitamin K2 (20) im Tierkörper. Biochem. Z. 333, 430 (1960).Google Scholar
  16. Blankenhorn, D. H.: Carotenoids in man. J. biol. Chem. 227, 963 (1957).PubMedGoogle Scholar
  17. Bleiler, R. E., D. Johnson and H. T. Parsons: Metabolism of folic acid and citrovorum factor by human subjects. J. Nutr. 56, 163 (1955).PubMedGoogle Scholar
  18. Blumberg, A., H. Aebi, H. Hurni and G. Schoenholzer: Das Verteilungsmuster von C14-Ergocalciferol (Vitamin D2) bei der Ratte und beim Rhesusaffen. Hely. physiol. Acta 18, 56 (1960).Google Scholar
  19. Blumberger, K., P. Petrides and K. Bernhauer: Vitamin B12 und Intrinsic Factor, S. 82. Stuttgart 1957.Google Scholar
  20. Boas, M.A.: The effect of desication upon the nutritive properties of eggwhite. Biochem. J. 21, 712 (1927).PubMedGoogle Scholar
  21. Bonting, S. L.: The effect of a prolonged intake of phosphoric acid and citric acid in rats. Harlem 1952.Google Scholar
  22. Boxer, G. E., C. E. Shonk, E. W. Gilfillan, G. A. Emerson and E. L. Oginsky: Changes in Coenzyme A concentration during vitamin B12 deficiency. Arch. Biochem. 59, 24 (1955).PubMedCrossRefGoogle Scholar
  23. Braganca, B.M., I. Aravindakshan and D. S. Ghanerar: Enzymic cleavage of folic acid by extracts from human blood cells. Biochim. biophys. Acta 25, 623 (1927).Google Scholar
  24. Brockmann, W. A.: Vitamin C, Grundlagenerforschung und gegenwärtige therapeutische Verwendung. Arzneimittel-Forsch. 1, 169 (1951).Google Scholar
  25. Brodie, A. F., M. M. Weber and C. T. Gray: The role of vitamin K1 in coupled oxidative phosphorylation. Biochim. biophys. Acta 25, 448 (1957).Google Scholar
  26. Brubacher, G., U. Gloor and O. Wiss: Zum Stoffwechsel von ß-Apo8’-carotenal. Chimia 14, 19 (1960).Google Scholar
  27. Bruggemann, J., and J. Tiews: Vitamin A-Speicherung in der Rattenleber nach oraler Aufnahme von cis-trans-Isomeren des Vitamin A. Naturwissenschaften 46, 429 (1959).CrossRefGoogle Scholar
  28. Burch, H. B., O. A. Bessey and O. H. Lowry: The ability of thymidine to replace vitamin B12 as a growth factor for certain lactobacilli. J. biol. Chem. 175, 457 (1948).PubMedGoogle Scholar
  29. Burch, H. B., O. H. Lowry, A. M. Padilla and A. M. Combs: Effects of riboflavin deficiency and realimentation on flavin enzymes of tissues. J. biol. Chem. 223, 29 (1956).PubMedGoogle Scholar
  30. Burns, J. J., E. H. Mosbach and S. Schulenberg: Ascorbic acid synthesis in normal and drug-treated rats, studied with L-ascorbic-1-C14 acid. J. biol. Chem. 207, 679 (1954).PubMedGoogle Scholar
  31. Burns, J. J., P. Peyser and A. Moltz: Missing step in guinea pigs required for the biosynthesis of L-ascorbic acid. Science 124, 1148 (1956).PubMedCrossRefGoogle Scholar
  32. Canady, W. J., and J. H. Roe: Studies on the reaction of menadione with blood and denatured proteins. J. biol. Chem. 220, 571 (1956).PubMedGoogle Scholar
  33. Castle, W. B., and W. C. Townsend: Observations on the etiologic relationship of achylia gastrica to pernicious anemia. II. The effect of the administration to patients with pernicious anemia of beef muscle after incubation with normal human gastric juice. Amer. J. med. Sci. 178, 764 (1929).CrossRefGoogle Scholar
  34. Chang, M. L. W., and B. C. Joaxson: N-Methyl-4-pyridone-5-carboxamide, a new major metabolite of nictotinic acid in rat urine. J. biol. Chem. 234, 1817 (1959).PubMedGoogle Scholar
  35. Charalampous, F. C., and C. Lyras: Biochemical studies on inositol. IV. J. biol. Chem. 228, 1 (1957).PubMedGoogle Scholar
  36. Chernick, S. S., J. G. Mou and K. Schwarz: Dietary necrotic liver degeneration and coenzyme A. Proc. Soc. exp. Biol. (N. Y.) 89, 520 (1955).Google Scholar
  37. Christensen, H. N., and T. R. Riggs: Metal-chelated pyridoxylidene derivates of glycine and a,y-diaminobutyric acid. J. biol. Chem. 220, 279 (1956).PubMedGoogle Scholar
  38. Christine, L., G. Thomson, B. Iggo, A. C. Brownie and C. P. Stewart: The reduction of dehydroascorbic acid by human erythrocytes. Clin. chim. Acta 1, 557 (1956).Google Scholar
  39. Collins, R. A., A. E. Harper, M. Schreiber and C. A. Elvehjem: The folic acid and vitamin B12 content of the milk of various species. J. Nutr. 43, 313 (1951).PubMedGoogle Scholar
  40. Colpaboonstra, J. P., and E. C. Slater: The possible role of vitamin K in the respiratory chain. Biochim. biophys. Acta 27, 122 (1958).Google Scholar
  41. Cori, C. F., and B. Illingworth: The prostetic group of Phosphorylase. Proc. nat. Acad. Sci. (Wash.) 43, 547 (1957).CrossRefGoogle Scholar
  42. Cowlishaw, B., E. Sondergaard, I. Prange and H. Dam: Intracellular distribution of vitamin A and vitamin E in chicken liver. Biochim. biophys. Acta 25, 644 (1957).CrossRefGoogle Scholar
  43. Crawford, R. B., M. Morrison and E. Stotz: Studies on the role of lipids in mammalian cytochrome c reductase. Biochim. biophys. Acta 33, 543 (1959).Google Scholar
  44. Cruickshank, E. M., E. Kodicek and P. Armitage: The vitamin D content of tissues of rats given ergocalciferol. Biochem. J. 58, 172 (1954).PubMedGoogle Scholar
  45. Curtin, C. O’H., and C. G. King: The metabolism of ascorbic acid-1-C14 and oxalic acid-C14 in the rat. J. biol. Chem. 216, 539 (1955).PubMedGoogle Scholar
  46. Dallam, R. D., and W. W. Anderson: Vitamin K, and oxidative phosphorylation. Biochim. biophys. Acta 25, 439 (1957).Google Scholar
  47. Dam, H.: Vitamin K, its chemistry and physiology. Advanc. Enzymol. 2, 286 (1942).Google Scholar
  48. Dam, H.: Vitamin K. Vitam. and Horm. 6, 28 (1948).Google Scholar
  49. Dam, H.: The biochemistry of fat-soluble vitamins. Progress in the chemistry of fats and other lipids, S. 153. London and New York 1955.Google Scholar
  50. Darby, W. J.: The physiological effects of pteroylglutamates in man, with particular reference in pteroylglutamic acid. Vitam. and Horm. 5, 119 (1947).CrossRefGoogle Scholar
  51. Das, M. L., and B. C. Guhr: Isolation and chemical characterization of bound Niacin (Niacinogen) in cereal grains. J. biol. Chem. 235, 2971 (1960).PubMedGoogle Scholar
  52. Daughaday, W. H., J. Larner and C. Hartnett: The synthesis of inositol in the immature rat and chick embryo. J. biol. Chem. 212, 869 (1955).PubMedGoogle Scholar
  53. Deul, D., E. C. Slater and L. Veldstra: The possible role of a-tocopherol in the respiratory chain. Biochim. biophys. Acta 27, 133 (1958).Google Scholar
  54. Dianzani, M. U.: The content of adenosine polyphosphates in fatty livers. Biochem. J. 65, 116 (1957).PubMedGoogle Scholar
  55. Dianzani, M. U., and M. A. Dianzanimor: Displacement of thiamine pyrophosphate from swollen mitochondria. Biochim. biophys. Acta 24, 564 (1957).Google Scholar
  56. Dinning, J. S., J. T. Slime and P. L. Day: The influence of vitamin E deficiency of the metabolism of sodiumformat-C14 and glycine-1-C14 by the rabbit. J. biol. Chem. 217, 205 (1955).Google Scholar
  57. Dinning, J. S., J. T. Slime and P. L. Day: An increased incorporation of P32 into nucleic acids by vitamin E-deficient rabbits. J. biol. Chem. 222, 215 (1956).PubMedGoogle Scholar
  58. Diplock, A. T., E. E. Edwin, J. Green, J. Bunyan and S. Marcinkiewicz: Ubiquinones and unbichromenols in the rat. Nature (Lond.) 186, 664 (1960).CrossRefGoogle Scholar
  59. Dixon, T. F., and H. R. Perkins: Citric acid and bone metabolism. Biochem. J. 52, 260 (1952).PubMedGoogle Scholar
  60. Donath, W. F., and C. D. DE Langen: Vitamin D sclerosis of the arteries and the danger of feeding extra vitamin D to older people. Proc. kon. ned. Akad. Wet., Ser. C60, 15 (1957).Google Scholar
  61. Dowling, J. E., and G. Wald: The biological function of vitamin A acid. Proc. nat. Acad. Sci. (Wash.) 46, 587 (1960).CrossRefGoogle Scholar
  62. Draper, H. H., and A. S. Csallany: Observations on the reactivation of isooctane-extracts Dpnh-cytochrome e reductase with D-(14C)-a-tocopherol. Biochim. biophys. Acta 38, 161 (1960).Google Scholar
  63. Eagle, H., V.I.Oyama, M. Levy and A. E. Freeman: myo-Inositol as an essential growth factor for normal and malignant human cells in tissue culture. J. biol. Chem. 226, 191 (1957).Google Scholar
  64. Ellinger, P., and M. M. Abdel Kader: Nicotinamide metabolism in mammals. Biochem. J. 44, 77 (1949).Google Scholar
  65. Embre, N. D.: Fat-soluble vitamins. Ann. Rev. Biochem. 16, 323 (1947).CrossRefGoogle Scholar
  66. Fahndrich, W. H.: In K. Lang and R. Schoen, Die Ernährung, S. 537. Berlin-GöttingenHeidelberg 1952.Google Scholar
  67. Farber, M. C., A. E. Milman and A. T. Milhorat: Vitamin E-Aktivität einiger Tocopherolderivate und verwandter Substanzen. Z. physiol. Chem. 295, 318 (1953).Google Scholar
  68. Ford, E. J., and S. H. Hutner: Role of vitaminB12 in the metabolism of microorganisms. Vitam. and Hormon. 13, 102 (1955).Google Scholar
  69. Fraenkelconrat, J., and H. Fraenkelconrat: Metabolic fate of biotin and of avidin-biotin complex upon parenteral administration. Biochim. biophys. Acta 8, 66 (1952).Google Scholar
  70. Franko, T., and S. Lino: Wirkungen eines Überschusses an Vitamin A. Stud. Fisiopat. Ricambio 19, 68 (1955).Google Scholar
  71. Glock, G. E., and P. Mclean: Levels of oxidised and reduced diphosphopyridine nucleotide and triphosphopyridine nucleotide in animal tissues. Biochem. J. 61, 388 (1955).PubMedGoogle Scholar
  72. Glock, G. E., and P. Mclean: The intracellular distribution of pyridine nucleotides. Exp. Cell Res. 11, 234 (1956).PubMedCrossRefGoogle Scholar
  73. Gloor, U., and O. Wiss: On the biosynthesis of ubiquinone (50). Arch. Biochem. 83, 216 (1959).PubMedCrossRefGoogle Scholar
  74. Glover, J., and E. R. Redfearn: The mechanism of the transformation of fl-carotene into vitamin A in vivo. Biochem. J. 58, X V (1954).Google Scholar
  75. Goldsmith, G. A., H. P. Sarett, and D. Register and J. Gibbens: Studies of niacin requirement of man. I. J. clin. Invest. 31, 533 (1952).CrossRefGoogle Scholar
  76. Green, D. E., D. M. Ziegler and K. A. Doeg: Sequence of components in the succinic chain of mitochondrial electron transport system. Arch. Biochem. 85, 280 (1959).PubMedCrossRefGoogle Scholar
  77. Green, J. P., E. Sondergaard and H. Dam: Intracellular distribution of vitamin K in beef liver. Biochim. biophys. Acta 19, 182 (1956).Google Scholar
  78. Green, J. P., E. Sondergaard and H. Dam: Some liver enzymes during dicumarol treatment and vitamin K1-deficiency. J. Pharmacol. exp. Ther. 119, 12 (1957).PubMedGoogle Scholar
  79. Grolman, A. P., and A. L. Lehninger: Enzymic synthesis of L-Ascorbic acid in different animal species. Arch. Biochem. 69, 458 (1957).CrossRefGoogle Scholar
  80. Haavaldsen, R., and R. Nicolaysen: Studies in calcium metabolism in rats. I. A long term study in rats given an optimal diet with and without vitamin D. Acta physiol. scand. 36, 102 (1956).PubMedCrossRefGoogle Scholar
  81. Haubold, H.: Der Kropf, eine Mangelerkrankung. Stuttgart-Plienningen 1955.Google Scholar
  82. Heilbronn, I. M., W. E. Jones and A. L. Bacharach: The chemistry and physiology of vitamin A. Vitam. and Horm. 2, 155 (1944).CrossRefGoogle Scholar
  83. High, E. G., and S. S. Wilson: Effects of Vitamin B12 on the utilization of carotene and Vitamin A by the rat. J. Nutr. 50, 203 (1953).PubMedGoogle Scholar
  84. Hogeboom, G. H., and W. C. Schneider: The synthesis of diphosphopyridine nucleotide by liver cell nuclei. J. biol. Chem. 197, 611 (1952).PubMedGoogle Scholar
  85. Hope, D. B.: L-Cystathionine in the urine of pyridoxine-deficient rats. Biochem. J. 66, 486 (1957).PubMedGoogle Scholar
  86. Horecker, B. L., P. Z. Smyrniotis and H. Klenow: The formation of sedoheptulosephosphate from pentose-phosphate. J. biol. Chem. 205, 661 (1953).PubMedGoogle Scholar
  87. Horwitt, M. K., O. W. Hills, C. C. Harvey, E. Liebert and D. L. Steinberg: Effects of dietary depletion of riboflavin. J. Nutr. 39, 357 (1949).PubMedGoogle Scholar
  88. Hove, E. L., and P. L. Harris: Relative activity of the tocopherols in curing muscular dystrophy in rabbits. J. Nutr. 33, 95 (1947).PubMedGoogle Scholar
  89. Hdennekens, F. M., M. J. Osborn and H. R. Whiteley: Folic acid coenzymes. Science 128, 120 (1958).CrossRefGoogle Scholar
  90. Hume, E. M., and H. A. Krebs: Vitamin A requirements of human adults. An experimental study of vitamin A deprivation in man. Med. Res. Council Brit. Spec. Rep. Ser. No 264, 1949.Google Scholar
  91. Hummel, J. P.: Oxidative phosphorylation processes in nutritional muscular dystrophy. J. biol. Chem. 172, 421 (1948).PubMedGoogle Scholar
  92. Hurlock, B., and P. Talalay: 3-a-Hydroxysteroids as Coenzyme of hydrogen transfer between di-and triphosphopyridine nucleotides. J. biol. Chem. 233, 886 (1958).PubMedGoogle Scholar
  93. Inhoffen, H. H., and K. Irmscher: Fortschritte der Chemie der Vitamine D and ihrer Abkömmlinge Fortschr. Chem. organ. Naturstoffe 17, 70 (1959).Google Scholar
  94. Isler, O.: Über die Vitamine K, and K2. Angew. Chem. 71, 7 (1959).CrossRefGoogle Scholar
  95. Isler, O., R. RÜEgg, A. Studer and R. JÜRgens: Konstitutionsspezifische Wirkung von Vitamin K1 and Analogen gegen CumarinVerbindungen. Z. physiol. Chem. 295, 290 (1953).Google Scholar
  96. Jacobson, K. B., and N. O. Kaplan: Distribution of enzymes cleaving pyridine nucleotides in animal tissues. J. biophys. biochem. Cytol. 3, 31 (1957).PubMedCrossRefGoogle Scholar
  97. Jomnson, B. C.: Water soluble vitamins. Part Iii. Ann. Rev. Biochem. 24, 419 (1955).CrossRefGoogle Scholar
  98. Kadin, H., and M. Osanca: Biochemistry of erythorbic acid. Agricult. Food Chem. 7, 358 (1959).CrossRefGoogle Scholar
  99. Kagawa, Y., Y. Mano and N. Shimazono: Metabolism of L-ascorbic acid in rat liver. Biochim. biophys. Acta 43, 349 (1960).Google Scholar
  100. Kanfer, J., G. Ashwell and J. J. Burns: Formation of L-lyxonic and L-xylonic acids from L-ascorbic acid in rat kidney. J. biol. Chem. 235, 2518 (1960).PubMedGoogle Scholar
  101. Kaplan, N. O., A. Goldin, S. R. Humphreys, M. M. Ciotti and F. E. Stolzenbach: Pyridine nucleotide synthesis in the mouse. J. biol. Chem. 219, 287 (1956).PubMedGoogle Scholar
  102. Kaplan, N. O., M.N. Swartz, M.E. French and M. M. Ciotti: Phosphorylative and nonphosphorylative pathways of electron transfer in rat liver mitochondria. Proc. Nat. Acad. Sci. (Wash.) 42, 481 (1956).CrossRefGoogle Scholar
  103. Kennedy, E. P., and S. B. Weiss: The function of cytidine coenzymes in the biosynthesis of phospholipides. J. biol. Chem. 222, 193 (1956).PubMedGoogle Scholar
  104. Kersten, H., W. Kersten and Ha. Staudinger: Stoffwechsel der Nebennierenrinde and Biosynthese der Corticosteroide. IX. Biochem. Z. 327, 284 (1955/56). Über die Isolierung einer Ascorbinsäureabhängigen Dpnh-Oxydase. Biochim. biophys. Acta 24, 222 (1957).Google Scholar
  105. Koniuszy, F. R., P. H. Gale, A. C. Page jr. and K. Folkers: Coenzyme Q. Xiii Isolation, assay and human urinary levels of coenzyme Q10. Arch. Biochem. 87, 298 (1960).PubMedCrossRefGoogle Scholar
  106. Krause, R. F., M. O. Coover and L. T. Powell: Conversion of C14-carotene to a nonsaponifiable substance or substances in the rat. Proc. Soc. exp. Biol. (N. Y.) 85, 317 (1954).CrossRefGoogle Scholar
  107. Krause, R. F., and P. L. Sanders: The uptake of C14 by vitamin A in rats. Arch. Biochem. 62, 506 (1956).PubMedCrossRefGoogle Scholar
  108. Krinsky, N. I., and J. Ganguly: Intracellular distribution of vitamin A-ester and vitamin A-alcohol in rat liver. J. biol. Chem. 202, 227 (1953).PubMedGoogle Scholar
  109. Kuether, C. A., I. R. Telford and J. H. Roe: The relation of the blood levels of ascorbic acid to the tissue concentrations of this vitamin and to the histology of the incisor teeth in the guinea pig. J. Nutr. 28, 347 (1944).Google Scholar
  110. Ladu, B. N., and V. G. Zannoni: The tyrosine oxidation system of liver. Iii. J. biol. Chem. 219, 273 (1956).Google Scholar
  111. Laidman, D. L., R. A. Morton, J. Y. F. Paterson and J. F. Pennock: Substance SC (ubichromenol): a naturally-occuring cyclic isomeride of ubiquinone 50. Biochem. J. 74, 541 (1960).PubMedGoogle Scholar
  112. Lang, K., and O.F. Ranke: Stoffwechsel und Ernährung. BerlinGöttingen-Heidelberg 1950.Google Scholar
  113. Lang, K., and R. Schoen: Die Ernährung, S. 65. BerlinGöttingen-Heidelberg 1952.Google Scholar
  114. Lasch, H. G., and L. Roka: Zur Prothrombinbildung in der Leber. Z. physiol. Chem. 294, 30 (1953).Google Scholar
  115. Latner, A. L., and L. Raine: Effect of analogues on the uptake of vitamin B12 by the intact rat. Nature (Lond.) 180, 1197 (1957).CrossRefGoogle Scholar
  116. Lenkeit, W., H. Brune and K. Gunther: Ein Beitrag zur Vitamin D-Ausscheidung mit der Milch. Z. Tierphysiol., Tierernähr. Futtermittelk. 14, 129 (1959).Google Scholar
  117. Lettre, H., H. H. Inhoffen and R. Tschesche: Über Sterine, Gallensäuren und verwandte Naturstoffe, Bd. 1, S. 169. Stuttgart 1954.Google Scholar
  118. Lewis, J. M., O. Bodansky, K. G. Falk and G. Mcguire: Vitamin A requirement of the rat. The relation of Vitamin A intake to growth and to concentration of Vitamin A in the blood plasma, liver and retina. J. Nutr. 23, 35 (1942).Google Scholar
  119. Lewis, L. A., M. I. Quaife and I. H. Page: Lipoproteins of serum, carriers of tocopherol. Amer. J. Physiol. 178, 221 (1954).PubMedGoogle Scholar
  120. Lichstein, H. C.: Functions of biotin in enzyme systems. Vitam. and Horm. 9, 27 (1951).CrossRefGoogle Scholar
  121. Linn, B. O., A. C. Page jr., E. L. Wong, P. H. Gale and C. H. Shunk: Coenzyme Q. Vii. Isolation and distribution of coenzyme Q19 in animal tissues. J. Amer. chem. Soc. 81, 4007 (1959).Google Scholar
  122. Lojklx, M. E., A. W. Wertz and C. G. Dietz: Metabolism of nicotinic acid in pregnancy. J. Nutr. 46, 335 (1952).Google Scholar
  123. Lowe, J. S., and R. A. Morton: Some aspects of vitamin A metabolism. Vitam. and Horm. 14, 97 (1956).CrossRefGoogle Scholar
  124. Lowry, O. H.: Biochemical evidence of nutritional status. Physiol. Rev. 32, 431 (1952).PubMedGoogle Scholar
  125. Lundquist, F.: Glycerophosphoryl choline as a precursor of free choline in mammalian semen. Nature (Lond.) 173, 587 (1953).CrossRefGoogle Scholar
  126. Lynen, F., J. Knappe, E. LoRch, G. Jutting and E. Ringelmann: Die biochemische Funktion des Biotins. Angew. Chem. 71, 481 (1959).Google Scholar
  127. Maibauer, D., and H. Herken: Vorkommen und Anreicherung von Inosit und Inositderivaten in den Zellfraktionen von Gehirn und Leber. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 227, 456 (1956).Google Scholar
  128. Mameesh, M. S., and B. C. Johnson: Production of dietary vitamin K deficiency in the rat. Proc. Soc. exp. Biol. (N.Y.) 101, 467 (1959).CrossRefGoogle Scholar
  129. Mannering, G. J.: Vitamin requirements of the guinea pig. Vitam. and Horm. 7, 201 (1949).CrossRefGoogle Scholar
  130. Martius, C.: Die Stellung des Phyllochinons (Vitamin K1) in der Atmungskette. Biochem. Z. 326, 24 (1954/55).Google Scholar
  131. Martius, C.: Phyllochinonreduktase. Biochem. Z. 326, 26 (1954/55).Google Scholar
  132. Martius, C., and J. Costelli: Über Phyllochinonreduktase. Biochem. Z. 329, 449 (1957).Google Scholar
  133. Martius, C., and H. O. Esser: Über die Konstitution des im Tierkörper aus Methylnaphtochinon gebildeten K-Vitamins. Biochem. Z. 331, 1 (1959).Google Scholar
  134. Martius, C., and D. Nitz-Litzow: Zum Wirkungsmechanismus des Vitamin K. Biochem. Z. 327, 1 (1955/56).Google Scholar
  135. Mason, K. E.: In W. H. Sebrell jr. and R. S. Harris, The vitamins, Bd. I, S. 137. New York 1954.Google Scholar
  136. Mccarthy, P. T., L. R. Cerecedo and E. V. Brown: The fate of thiamine-S35 in the rat. J. biol. Chem. 209, 611 (1954).PubMedGoogle Scholar
  137. Mccollum, E. V.: US Pharmacopoe X II (1942).Google Scholar
  138. Mcdaniel, E. G., J. M. Hundley and W. H. Sebrell: Niacin and antiniacin activity of 3-acetylpyridine in dogs. J. Nutr. 55, 623 (1955).PubMedGoogle Scholar
  139. Mcmanus, I. R.: The metabolism of anserine and carnosine in normal and vitamin E-defcient rabbits. J. biol. Chem. 235, 1398 (1960).Google Scholar
  140. Meister, A.: Transamination. Advanc. Enzymol. 16, 185 (1955).Google Scholar
  141. Morton, R. A.: Ubiquinone. Nature (Lond.) 182, 1764 (1958).CrossRefGoogle Scholar
  142. Morton, R.A., and W.E. Phillips: Unsaponifiable constituents of rat tissues in relation to vitamin K status. Biochem. J. 73, 421 (1959).PubMedGoogle Scholar
  143. Muralt, A. V.: The role of thiamine in nervous excitation. Exp. Cell. Res. Suppl. 5, 72 (1958).Google Scholar
  144. Nason, A., and I. R. Lehman: The role of lipids in electron transport II. J. biol. Chem. 222, 511 (1956).PubMedGoogle Scholar
  145. Needham, J.: The synthesis of inositol in the animal body. Biochem. J. 18, 891 (1924).PubMedGoogle Scholar
  146. Nichol, C. A.: The effect of ascorbic acid on the enzymatic formation of the citrovorum factor. J. biol. Chem. 204, 469 (1953).PubMedGoogle Scholar
  147. Nicolaysen, R., and N. Eeglarsen: The biochemistry and physiology of vitamin D. Vitam. and Horm. 11, 29 (1953).CrossRefGoogle Scholar
  148. Nielsen, H., and F. Leuthardt: Synthèse biologique de l’acide hippurique. Rely. physiol. Acta 7, C 53 (1949).Google Scholar
  149. Nieman, C., and H. J. K. Obrink: The biochemistry and pathology of hypervitaminosis A. Vitam. and Horm. 12, 69 (1954).CrossRefGoogle Scholar
  150. Novelli, G. D.: Metabolic functions of pantothenic acid. Physiol. Rev. 33, 525 (1953).PubMedGoogle Scholar
  151. Page jr., A. C., P. H. Gale, F. Koniuszy and K. Folkers: Coenzyme Q. IX. Coenzyme Q9 and Q19 content of dietary components. Biochem. 85, 474 (1959).Google Scholar
  152. Paul, H. E., and M. F. Paul: The relation of vitamin A intake to length of life, growth, tooth structure and eye condition. J. Nutr. 31, 67 (1946).Google Scholar
  153. Pearson, W. N.: Flavonoids in human nutrition and medicine. J. Amer. med. Ass. 164, 1675 (1957).CrossRefGoogle Scholar
  154. Pfleiderer, G., and D. Jeckel: Individuelle Milchsäuredehydrogenasen bei verschiedenen Säugetieren. Biochem. Z. 329, 370 (1957).PubMedGoogle Scholar
  155. Pileggi, V. J., H. F. DE Luca, J. W. Cramer and H. Steenbock: Citrate in the prevention of rickets in rats. Arch. Biochem. 60, 52 (1956).PubMedCrossRefGoogle Scholar
  156. Pilgram, L. O., E. M. Gal, E. N. Sassenrath and D. M. Greenberg: Metabolic studies with ethanolamine-1,2-C14. J. biol. Chem. 204, 367 1953.Google Scholar
  157. Plack, P. A.: The conversion of 11-cis into alltrans vitamin A in the rat. Brit. J. Nutr. 13, 111 (1959).PubMedCrossRefGoogle Scholar
  158. Pratt, J. V., and B. M. Hamil: Metabolism of women during the reproductive cyle. Xviii. J. Nutr. 44, 141 (1951).PubMedGoogle Scholar
  159. Preiss, J., and P. Handler: Biosynthesis of diphosphopyridine nucleotide. J. biol. Chem. 233, 488–493 (1958).PubMedGoogle Scholar
  160. Price, J. M., R. R. Brown and M. E. Ellis: Quantitative studies on the urinary excretion of tryptophan metabolites by humans ingesting a constant diet. J. Nutr. 60, 323 (1956).PubMedGoogle Scholar
  161. Quaife, M. L., and M. Y. Dju: Chemical estimation of vitamin E in tissue and the tocopherol content of some normal human tissues. J. biol. Chem. 180, 263 (1949).Google Scholar
  162. Rajalakshmi, S., V. Srinivasan and P. S. Sarma: Accumulation of cholesterol in inositol deficiency. Proc. Soc. exp. Biol. (N.Y.) 104, 97 (1960).CrossRefGoogle Scholar
  163. Ralli, E. P., and M. E. Dumm: Relation of pantothenic acid to adrenal cortical function. Vitam. and Horm. 11, 133 (1953).CrossRefGoogle Scholar
  164. Roe, J. H.: Chemical determination of ascorbic acid, dehydroascorbic, and diketogulonic acids. Methods of biochemical analysis, Bd. I, S. 115. New York 1954.Google Scholar
  165. Rosenblum, C., B. C. CHow, G. P. Condon and R. S. Yamamoto: Oral versus parenteral administration of 80Co-labeled Vitamin B12 to rats. J. biol. Chem. 198, 915 (1952).PubMedGoogle Scholar
  166. Rosenkrantz, IL, A. T. Milhorat and M. Farber: Counter-current distribution in identification of tocopherol compounds in feces. J. biol. Chem. 192, 9 (1951).PubMedGoogle Scholar
  167. Ross, G. I. M., and D. L. Mollin: Vitamin B12 und Intrinsic Factor, S. 437. Stuttgart 1957.Google Scholar
  168. Rothstein, M., and D. M. Greenberg: Studies on the metabolism of xanthurenic acid-4-C14. Arch. Biochem. 68, 206 (1957).PubMedCrossRefGoogle Scholar
  169. Sakuragi, T., and F. A. Kummerow: The biological utilization of various fat-soluble esters of pyridoxine and 4-desoxypyridoxine by rats. J. Nutr. 58, 557 (1956).PubMedGoogle Scholar
  170. Schettler, G.: Experimentelle Untersuchungen zur Vitamin D2 Vergiftung. Z. ges. exp. Med. 116, 138 (1951).Google Scholar
  171. Schmid, H., and R. G. Haber: Tokopherole. In: Hoppe-Seyler-Thierfelders Handbuch der physiologischen und pathologisch-chemischen Analyse, 10. Aufl., Bd. IV/2. Berlin-Göttingen-Heidelberg 1960.Google Scholar
  172. Schroder: Die Vitamine und ihre klinische Anwendung, 6. Aufl., S. 404. Stuttgart 1944.Google Scholar
  173. Sebrell jr., W. H., and R. S. Harris: The vitamins, Bd. 1, S. 1. New York 1954.Google Scholar
  174. Silverman, M., F. G. Ebauch jr. and R. C. Gardiner: The nature of labile citrovorum factor in human urine. J. biol. Chem. 223, 259 (1956).PubMedGoogle Scholar
  175. Simon, E. J., A. Eisengart, L. Sundheim and A. T. Milhorat: The metabolism of vitamin E. II. J. biol. Chem. 221, 807 (1956).Google Scholar
  176. Simon, E. J., C. S. Gross and A. T. Milhorat: The metabolism of vitamin E. I. J. biol. Chem. 221, 797 (1956).Google Scholar
  177. Slater, E. C.: The possible role of vitamin E in respiratory-enzyme systems. 4. Internat. Congr. of Biochemistry. Bd. 11: Vitamin metabolism, p. 316. 1960.Google Scholar
  178. Snell, E. E.: Summary of known metabolic functions of nicotinic acid, riboflavin and vitamin Bs. Physiol. Rev. 33, 509 (1953).PubMedGoogle Scholar
  179. Sobel, A. E.: The problem of the absorption and transportation of fat soluble vitamins. Vitam. and Horm. 10, 47 (1952).CrossRefGoogle Scholar
  180. Staudinger, HJ.: Biosynthese der Steroidhormone. 5. Colloquium der Ges. für physiologische Chemie, S. 192. Berlin-Göttingen. Heidelberg 1955.Google Scholar
  181. Steenbock, H., and A. Black: Fat soluble Vitamins Xxiii J biol. Chem. 64, 263 (1925).Google Scholar
  182. Steenbock, H., and D. C. Herting: Vitamin D and growth. J. Nutr. 57, 449 (1955).PubMedGoogle Scholar
  183. Steenbock, H., C. H. Krieger, W. G. Wist and V. J. Pileggi: Vitamin D and intestinal phytase. J. biol. Chem. 205, 993 (1953).PubMedGoogle Scholar
  184. Stepr, W., J. KÜHnau and H. Stich, W.: Eine neue Funktion des Lactoflavins. Steuerung des biologischen Dualismus der Porphyrine und Katalyse der Hämsynthese. Naturwissenschaften 37, 212 (1950).CrossRefGoogle Scholar
  185. Stoffel, W., and C. Martius: Über den Mechanismus der Bildung von Vitaminen der K2-Reihe und von Ubichinonen durch enzymatische Alkylierung der entsprechenden in 3-Stellung substituierten Chinone. Biochem. Z. 333, 440 (1960).Google Scholar
  186. Sundaram, T. K., and P. S. Sarma: Metabolism of nicotinic acid under normal conditions and in pantothenat deficiency, studied in the rat. Biochim. biophys. Acta 22, 547 (1956).Google Scholar
  187. Supplee, W. C., G. F. Combs and G. L. Romoser: Failure to obtain growth response with thioctic acid in chicks from different sources. Arch. Biochem. 61, 140 (1956).PubMedCrossRefGoogle Scholar
  188. Swenseid, M. E., F. H. Bethell and W. W. Ackermann: The intracellular distribution of vitamin B12 and folinic acid in mouse liver. J. biol. Chem. 190, 791 (1951).Google Scholar
  189. Tabor, H., and L. Wyngarden: A method for the determination of formiminoglutamic acid in urine. J. clin. Invest. 37, 824 (1958).PubMedCrossRefGoogle Scholar
  190. Tallan, H.: Free amino acids of muscle of normal and of vitamin E-deficient rabbits. Proc. Soc. exp. Biol. Med. (N. Y.) 89, 553 (1955).CrossRefGoogle Scholar
  191. Taylor, J. D., G. J. Millar, L. B. Jaques and J. W. T. Spinks: The distribution of administered vitamin K1–C14 in rats. Canad. J. Biochem. 34, 1143 (1956).PubMedCrossRefGoogle Scholar
  192. Toennies, G., H. G. Frank and D. L. Gallant: On the folic acid activity of human blood. J. biol. Chem. 200, 23 (1953).PubMedGoogle Scholar
  193. Tulpule, P. G., and V. N. Patwardhan: Mode of action of vitamin D The effect of vitamin D deficiency in the rat on anaerobic glycolysis and pyruvate oxidation by epiphyseal cartilage. Biochem. J. 58, 61 (1954).PubMedGoogle Scholar
  194. Ungley, C. C.: The chemotherapeutic action of vitamin B12. Vitam. and Horm. 13, 139 (1955).Google Scholar
  195. Vannotti, A.: In K. Lang and R. Schoen, Die Ernährung, S. 491. Berlin-GöttingenHeidelberg 1952.Google Scholar
  196. Veraguth, F.: Über den Einfluß des Ca/P-Verhältnisses in der Nahrung auf die Bildung von Kalkmetastasen nach Vitamin D-Verabreichung. Z. ges. exp. Med. 133, 203 (1960).Google Scholar
  197. Vigneaud, V. D.: A trail of research in sulfur metabolism. Ithaca, New York 1952.Google Scholar
  198. Wagle, S. R., R. Mehta and B. C. Johnson: Vitamin B12 and protein biosynthesis. J. biol. Chem. 230, 130 (1958); 233, 619 (1958).Google Scholar
  199. Wagner, K. H.: Die experimentelle Avitaminose A beim Menschen. Hoppe-Seylers Z. physiol. Chem. 264, 153 (1940).Google Scholar
  200. Wagtendonk, W. J. van, and R. Wulzen: Physiological and chemical aspects of the antistiffness factor essential for guinea pigs. Vitam. and Horm. 8, 69 (1950).CrossRefGoogle Scholar
  201. Wald, G.: The photoreceptor function of the carotenoids and vitamins A Vitam. and Horm. 1, 195 (1943).Google Scholar
  202. Wald, G.: The photoreceptor function of the carotenoids and vitamins A Vitam. In W. H. Sebrell jr., and R. S. Harris, The vitamins, Bd. 1, S. 59. New York 1954.Google Scholar
  203. Wald, G.: The photoreceptor function of the carotenoids and vitamins A Vitam. In O. H. Gaebler, Enzymes, units of biological structure and function, S. 355. New York 1956.Google Scholar
  204. Weber, F., U. Gloor and O. Wiss: Über den Mechanismus der Reaktivierung der Bernsteinsäure-Cytochrom c-Reduktase durch die Vitamine E und K. Heiv. chim. Acta 41, 1038–1046 (1958).CrossRefGoogle Scholar
  205. Weber, M. M., N. O. Kaplan, A. S. Pietro and F. E. Stolzenbacj: Mechanism of flavoprotein-catalyzed pyridine nucleotide transfer reactions. J. biol. Chem. 227, 27 (1957).PubMedGoogle Scholar
  206. Williams, R. J., R. E. Eakin, E. Beerstecher jr. and W. Shive: The biochemistry of B-vitamins. New York 1950.Google Scholar
  207. Wolf, G., S. G. Kahn and B. C. Johnson: Metabolism studies with radioactive vitamin A J Amer. chem. Soc. 79, 1208 (1957).CrossRefGoogle Scholar
  208. Wolf, G., S. R. Wagle, R. A. Van Dyke and B. C. Johnson: The function of vitamin A in metabolism. J. biol. Chem. 230, 979 (1958).PubMedGoogle Scholar
  209. Zbinden, G., and A. Studer: Tierexperimentelle Untersuchungen über die chronische Verträglichkeit von ß-Carotin, Lycopin, 7,7’-Dihydro-ß-carotin und Bixin Z Unters. Lebens-mitt. 108, 113 (1958).Google Scholar
  210. Zechmeister, L.: Stereoisomeric provitamins A. Vitam. and Horm. 7, 57 (1949).CrossRefGoogle Scholar
  211. Zetterstroem, R., and M. Ljunggreen: Aktivierung der aeroben Oxydation von Nierenmitochondrien durch phosphoryliertes Vitamin D. Acta chem. stand 5, 283–343 (1951).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1962

Authors and Affiliations

  • Konrad Lang
    • 1
  1. 1.MainzDeutschland

Personalised recommendations