Skip to main content

Sulfur Isotope Studies on Red Sea Geothermal Brines and Sediments

  • Chapter

Abstract

S34/S32 measurements and trace element analyses were performed on sediment from selected cores from the Red Sea geothermal deposit, the overlying brine and interstitial water.

The data show that δS34 falls into four general ranges: (1) >25 per mill, (2) +23 to +15 per mill, (3) +12 to +2 per mill, (4) <−25 per mill. Sulfate in the brine appears to have been derived from marine evaporites, whereas sulfide originates from two sources. In the Atlantis II Deep, it is derived from a hydrothermal process and introduced with the brine. In the other areas, biological sulfate reduction produces sulfide which precipitates metals from the brine originating in the Atlantis II Deep.

Contribution No. 680, Institute of Geophysics and Planetary Physics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ault, W. V. and J. L. Kulp: Isotopic geochemistry of sulphur. Geochim. et Cosmochim. Acta. 16, 201 (1959).

    Article  Google Scholar 

  • Ault, W. V. and J. L. Kulp: Sulfur isotopes and ore deposits. Econ. Geol. 55, 73 (1960).

    Article  Google Scholar 

  • Barton, P. B., Jr.: Possible role of organic matter in the precipitation of the Mississippi Valley ores. Econ. Geol. 3, 371 (1967).

    Google Scholar 

  • Bischoff, J. L.: Red Sea geothermal deposits: their mineralogy, chemistry and genesis. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 368-401 (1969).

    Google Scholar 

  • Bischoff, J. L. and F. T. Manheim: Economic potential of the Red Sea heavy mineral deposits. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 535-541 (1969).

    Google Scholar 

  • Brewer, P. G., J. P. Riley, and F. Culkin: The chemical composition of the hot salty water from the bottom of the Red Sea. Deep Sea Res. 12, 497 (1965).

    Google Scholar 

  • Brooks, R. R., I. R. Kaplan, and M. N. A. Peterson: Trace element composition of the Red Sea geothermal brine and interstitial water. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 180-203 (1969).

    Google Scholar 

  • Burnham, C. W.: Lattice constant refinement. Carnegie Inst. Wash. Yearbook. 61, 132 (1962).

    Google Scholar 

  • Chester, R.: Elemental geochemistry of marine sediments. In: Chemical Oceanography, J. P. Riley and G. Skirrow (eds.). 2, 23 (1965).

    Google Scholar 

  • Craig, H.: Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science. 154, 1544 (1966).

    Article  Google Scholar 

  • Davidson, C. F.: On the cobalt-nickel ratio in ore deposits. Mining Mag., 106, 78 (1962a).

    Google Scholar 

  • Davidson, C. F.: The origin of some strata-bound sulfide ore deposits. Econ. Geol., 57, 265 (1962b).

    Article  Google Scholar 

  • Davidson, C. F.: A possible mode of origin of strata-bound copper ores. Econ. Geol. 60, 942 (1965).

    Article  Google Scholar 

  • Degens, E. T. and D. A. Ross: Hot brines and heavy metals in the Red Sea. Oceanus. 13, 24 (1967).

    Google Scholar 

  • Drake, C. L. and R. W. Girdler: A geophysical study of the Red Sea. Geophys. J. Roy. Ast. Soc. 8, 473 (1964).

    Article  Google Scholar 

  • Dunham, K. C.: Neptunist concepts in ore genesis. Econ. Geol. 59, 1 (1964).

    Article  Google Scholar 

  • Fleischer, M.: Minor elements in some sulfide minerals. Econ. Geol., 50th anniv. vol., 970 (1955).

    Google Scholar 

  • Gavelin, S., A. Parwel, and R. Ryhage: Sulfur isotope fractionation in sulfide mineralization. Econ. Geol. 55, 510 (1960).

    Article  Google Scholar 

  • Germanov, A. I.: Geochemical significance of organic matter in the hydrothermal process. Geochemistry International. 2, 643 (1965).

    Google Scholar 

  • Gross, W. H. and H. G. Thode: Ore and the source of acid intrusives using sulfur isotopes. Econ. Geol. 60, 576 (1965).

    Article  Google Scholar 

  • Hardie, L. A.: The gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Min. 52, 171 (1967).

    Google Scholar 

  • Harrison, A. G. and H. G. Thode: The kinetic isotope effect in the chemical reduction of sulphate. Trans. Farad. Soc. 53, 1648 (1957).

    Article  Google Scholar 

  • Hartmann, M. and H. Nielsen: Sulfur isotopes in the hot brine and sediment of Atlantis II Deep (Red Sea). Marine Geol. 4, 305 (1966).

    Article  Google Scholar 

  • Heybroek, F.: The Red Sea Miocene Evaporite Basin. In: Salt Basins Around Africa, Inst. Petroleum, London, 17 (1965).

    Google Scholar 

  • Holser, W. T. and I. R. Kaplan: Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1, 93 (1966).

    Article  Google Scholar 

  • Hulston, J. R. and W. J. McCabe: Mass spectrometer measurements in the thermal areas of New Zealand. Part 2: Carbon isotopic ratios. Geochim. et Cosmochim. Acta. 26, 399 (1962).

    Article  Google Scholar 

  • Hunt, J. M., E. E. Hays, E. T. Degens, and D. A. Ross: Red Sea: detailed survey of hot brine area. Science. 156, 512 (1967).

    Article  Google Scholar 

  • Kaplan, I. R., K. O. Emery, and S. C. Rittenberg: The distribution and isotopic abundance of sulphur in recent marine sediments off Southern California. Geochim. et Cosmochim. Acta. 27, 297 (1963).

    Article  Google Scholar 

  • Kaplan, I. R. and S. C. Rittenberg: Microbial fractionation of sulphur isotopes. J. Gen. Microbiol. 34, 195 (1964).

    Article  Google Scholar 

  • Lebedev, L. M.: Modern growth of sphalerite. Doklady Akad. Nauk USSR (English trans.), 175, 196 (1967a).

    Google Scholar 

  • Lebedev, L. M.: Metacolloids in Endogenetic Deposits. Plenum Press, New York, 1 (1967b).

    Google Scholar 

  • Lloyd, R. M.: Oxygen-18 composition of oceanic sulfate. Science. 156, 1228 (1967).

    Article  Google Scholar 

  • Loftus-Hills, G. and M. Solomon: Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Min. Deposita. 2, 228 (1967).

    Article  Google Scholar 

  • Longinelli, A. and H. Craig: Oxygen-18 variations in sulfate ions in sea water and saline lakes. Science. 156, 56 (1967).

    Article  Google Scholar 

  • Miller, A. R., C. D. Densmore, E. T. Degens, J. C. Hathaway, F. T. Manheim, P. F. McFarlin, R. Pocklington, and A. Jokela: Hot brines and recent iron deposits in deeps of the Red Sea. Geochim. et Cosmochim. Acta. 30, 341 (1966).

    Article  Google Scholar 

  • Nakai, N. and M. L. Jensen: Sulfur isotope fractionation by bacterial oxidation and reduction of sulfur. Geochim. et Cosmochim. Acta. 28, 1893 (1964).

    Article  Google Scholar 

  • Onishi, H. and E. B. Sandell: Geochemistry of arsenic. Geochim. et Cosmochim. Acta. 7, 1 (1955).

    Article  Google Scholar 

  • Presley, B. J., R. R. Books, and H. M. Kappel: A simple squeezer for removal of interstitial water from ocean sediments. J. Marine Res., 25, 355 (1967).

    Google Scholar 

  • Riley, J. P.: The hot saline waters of the Red Sea bottom and their related sediments. In: Oceanogr. Mar. Biol.Ann. Rev., H. Barnes (ed.). 5, 141 (1967).

    Google Scholar 

  • Sakai, H.: Fractionation of sulfur isotopes in nature. Geochim. et Cosmochim. Acta. 12, 150 (1957).

    Article  Google Scholar 

  • Skinner, B. J., P. B. Barton, and G. Kullerud: Effect of FeS on the unit cell edge of sphalerite. A revision. Econ. Geol. 54, 1040 (1959).

    Article  Google Scholar 

  • Skinner, B. J., D. E. White, H. J. Rose, and R. E. Mays. Sulfides associated with the Salton Sea geothermal brine. Econ. Geol., 62, 316 (1967).

    Google Scholar 

  • Stanton, R. L.: The application of sulphur isotope studies in ore genesis theory — a suggested model. N.ZJ. Geol. Geophys. 3, 375 (1960).

    Google Scholar 

  • Steiner, A. and T. A. Rafter: Sulfur isotopes in pyrite, pyrrhotite, alunite and anhydrite from steam wells in the Taupo volcanic zone, New Zealand. Econ. Geol. 61, 1115 (1966).

    Article  Google Scholar 

  • Tatsumi, T.: Sulfur isotopic fractionation between coexisting sulfide minerals from Japanese ore deposits. Econ. Geol. 60, 1645 (1965).

    Article  Google Scholar 

  • Toland, W. G.: Oxidation of organic compounds with aqueous sulfate. J. Am. Chem. Soc. 82, 1911 (1960).

    Article  Google Scholar 

  • Triiper, H. G.: Bacterial sulfate reduction in the Red Sea hot brines. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 263-271 (1969).

    Google Scholar 

  • Trudge, A. P. and H. G. Thode: Thermodynamic properties of isotopic compounds of sulphur. Canad. J. Res., 28B, 567 (1950).

    Article  Google Scholar 

  • Turekian, K. K. and K. H. Wedepohl: Distribution of the elements in some major units of the earth’s crust. Bull. Geol. Soc. Amer. 72, 175 (1961).

    Article  Google Scholar 

  • Vlasov, K. A.: Geochemistry of rare elements. Translated by Israel Program for Scientific Translations, Jerusalem. 1, 552 (1966).

    Google Scholar 

  • Watson, S. W. and J. B. Waterbury: The sterile hot brines of the Red Sea. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 272-281 (1969).

    Google Scholar 

  • White, D. E.: Ore forming fluids of diverse origins. Econ. Geol. 63, 301 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaplan, I.R., Sweeney, R.E., Nissenbaum, A. (1969). Sulfur Isotope Studies on Red Sea Geothermal Brines and Sediments. In: Degens, E.T., Ross, D.A. (eds) Hot Brines and Recent Heavy Metal Deposits in the Red Sea. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-28603-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-28603-6_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-27120-9

  • Online ISBN: 978-3-662-28603-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics