Advertisement

Sulfur Isotope Studies on Red Sea Geothermal Brines and Sediments

  • I. R. Kaplan
  • R. E. Sweeney
  • Arie Nissenbaum

Abstract

S34/S32 measurements and trace element analyses were performed on sediment from selected cores from the Red Sea geothermal deposit, the overlying brine and interstitial water.

The data show that δS34 falls into four general ranges: (1) >25 per mill, (2) +23 to +15 per mill, (3) +12 to +2 per mill, (4) <−25 per mill. Sulfate in the brine appears to have been derived from marine evaporites, whereas sulfide originates from two sources. In the Atlantis II Deep, it is derived from a hydrothermal process and introduced with the brine. In the other areas, biological sulfate reduction produces sulfide which precipitates metals from the brine originating in the Atlantis II Deep.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ault, W. V. and J. L. Kulp: Isotopic geochemistry of sulphur. Geochim. et Cosmochim. Acta. 16, 201 (1959).CrossRefGoogle Scholar
  2. Ault, W. V. and J. L. Kulp: Sulfur isotopes and ore deposits. Econ. Geol. 55, 73 (1960).CrossRefGoogle Scholar
  3. Barton, P. B., Jr.: Possible role of organic matter in the precipitation of the Mississippi Valley ores. Econ. Geol. 3, 371 (1967).Google Scholar
  4. Bischoff, J. L.: Red Sea geothermal deposits: their mineralogy, chemistry and genesis. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 368-401 (1969).Google Scholar
  5. Bischoff, J. L. and F. T. Manheim: Economic potential of the Red Sea heavy mineral deposits. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 535-541 (1969).Google Scholar
  6. Brewer, P. G., J. P. Riley, and F. Culkin: The chemical composition of the hot salty water from the bottom of the Red Sea. Deep Sea Res. 12, 497 (1965).Google Scholar
  7. Brooks, R. R., I. R. Kaplan, and M. N. A. Peterson: Trace element composition of the Red Sea geothermal brine and interstitial water. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 180-203 (1969).Google Scholar
  8. Burnham, C. W.: Lattice constant refinement. Carnegie Inst. Wash. Yearbook. 61, 132 (1962).Google Scholar
  9. Chester, R.: Elemental geochemistry of marine sediments. In: Chemical Oceanography, J. P. Riley and G. Skirrow (eds.). 2, 23 (1965).Google Scholar
  10. Craig, H.: Isotopic composition and origin of the Red Sea and Salton Sea geothermal brines. Science. 154, 1544 (1966).CrossRefGoogle Scholar
  11. Davidson, C. F.: On the cobalt-nickel ratio in ore deposits. Mining Mag., 106, 78 (1962a).Google Scholar
  12. Davidson, C. F.: The origin of some strata-bound sulfide ore deposits. Econ. Geol., 57, 265 (1962b).CrossRefGoogle Scholar
  13. Davidson, C. F.: A possible mode of origin of strata-bound copper ores. Econ. Geol. 60, 942 (1965).CrossRefGoogle Scholar
  14. Degens, E. T. and D. A. Ross: Hot brines and heavy metals in the Red Sea. Oceanus. 13, 24 (1967).Google Scholar
  15. Drake, C. L. and R. W. Girdler: A geophysical study of the Red Sea. Geophys. J. Roy. Ast. Soc. 8, 473 (1964).CrossRefGoogle Scholar
  16. Dunham, K. C.: Neptunist concepts in ore genesis. Econ. Geol. 59, 1 (1964).CrossRefGoogle Scholar
  17. Fleischer, M.: Minor elements in some sulfide minerals. Econ. Geol., 50th anniv. vol., 970 (1955).Google Scholar
  18. Gavelin, S., A. Parwel, and R. Ryhage: Sulfur isotope fractionation in sulfide mineralization. Econ. Geol. 55, 510 (1960).CrossRefGoogle Scholar
  19. Germanov, A. I.: Geochemical significance of organic matter in the hydrothermal process. Geochemistry International. 2, 643 (1965).Google Scholar
  20. Gross, W. H. and H. G. Thode: Ore and the source of acid intrusives using sulfur isotopes. Econ. Geol. 60, 576 (1965).CrossRefGoogle Scholar
  21. Hardie, L. A.: The gypsum-anhydrite equilibrium at one atmosphere pressure. Am. Min. 52, 171 (1967).Google Scholar
  22. Harrison, A. G. and H. G. Thode: The kinetic isotope effect in the chemical reduction of sulphate. Trans. Farad. Soc. 53, 1648 (1957).CrossRefGoogle Scholar
  23. Hartmann, M. and H. Nielsen: Sulfur isotopes in the hot brine and sediment of Atlantis II Deep (Red Sea). Marine Geol. 4, 305 (1966).CrossRefGoogle Scholar
  24. Heybroek, F.: The Red Sea Miocene Evaporite Basin. In: Salt Basins Around Africa, Inst. Petroleum, London, 17 (1965).Google Scholar
  25. Holser, W. T. and I. R. Kaplan: Isotope geochemistry of sedimentary sulfates. Chem. Geol. 1, 93 (1966).CrossRefGoogle Scholar
  26. Hulston, J. R. and W. J. McCabe: Mass spectrometer measurements in the thermal areas of New Zealand. Part 2: Carbon isotopic ratios. Geochim. et Cosmochim. Acta. 26, 399 (1962).CrossRefGoogle Scholar
  27. Hunt, J. M., E. E. Hays, E. T. Degens, and D. A. Ross: Red Sea: detailed survey of hot brine area. Science. 156, 512 (1967).CrossRefGoogle Scholar
  28. Kaplan, I. R., K. O. Emery, and S. C. Rittenberg: The distribution and isotopic abundance of sulphur in recent marine sediments off Southern California. Geochim. et Cosmochim. Acta. 27, 297 (1963).CrossRefGoogle Scholar
  29. Kaplan, I. R. and S. C. Rittenberg: Microbial fractionation of sulphur isotopes. J. Gen. Microbiol. 34, 195 (1964).CrossRefGoogle Scholar
  30. Lebedev, L. M.: Modern growth of sphalerite. Doklady Akad. Nauk USSR (English trans.), 175, 196 (1967a).Google Scholar
  31. Lebedev, L. M.: Metacolloids in Endogenetic Deposits. Plenum Press, New York, 1 (1967b).Google Scholar
  32. Lloyd, R. M.: Oxygen-18 composition of oceanic sulfate. Science. 156, 1228 (1967).CrossRefGoogle Scholar
  33. Loftus-Hills, G. and M. Solomon: Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Min. Deposita. 2, 228 (1967).CrossRefGoogle Scholar
  34. Longinelli, A. and H. Craig: Oxygen-18 variations in sulfate ions in sea water and saline lakes. Science. 156, 56 (1967).CrossRefGoogle Scholar
  35. Miller, A. R., C. D. Densmore, E. T. Degens, J. C. Hathaway, F. T. Manheim, P. F. McFarlin, R. Pocklington, and A. Jokela: Hot brines and recent iron deposits in deeps of the Red Sea. Geochim. et Cosmochim. Acta. 30, 341 (1966).CrossRefGoogle Scholar
  36. Nakai, N. and M. L. Jensen: Sulfur isotope fractionation by bacterial oxidation and reduction of sulfur. Geochim. et Cosmochim. Acta. 28, 1893 (1964).CrossRefGoogle Scholar
  37. Onishi, H. and E. B. Sandell: Geochemistry of arsenic. Geochim. et Cosmochim. Acta. 7, 1 (1955).CrossRefGoogle Scholar
  38. Presley, B. J., R. R. Books, and H. M. Kappel: A simple squeezer for removal of interstitial water from ocean sediments. J. Marine Res., 25, 355 (1967).Google Scholar
  39. Riley, J. P.: The hot saline waters of the Red Sea bottom and their related sediments. In: Oceanogr. Mar. Biol.Ann. Rev., H. Barnes (ed.). 5, 141 (1967).Google Scholar
  40. Sakai, H.: Fractionation of sulfur isotopes in nature. Geochim. et Cosmochim. Acta. 12, 150 (1957).CrossRefGoogle Scholar
  41. Skinner, B. J., P. B. Barton, and G. Kullerud: Effect of FeS on the unit cell edge of sphalerite. A revision. Econ. Geol. 54, 1040 (1959).CrossRefGoogle Scholar
  42. Skinner, B. J., D. E. White, H. J. Rose, and R. E. Mays. Sulfides associated with the Salton Sea geothermal brine. Econ. Geol., 62, 316 (1967).Google Scholar
  43. Stanton, R. L.: The application of sulphur isotope studies in ore genesis theory — a suggested model. N.ZJ. Geol. Geophys. 3, 375 (1960).Google Scholar
  44. Steiner, A. and T. A. Rafter: Sulfur isotopes in pyrite, pyrrhotite, alunite and anhydrite from steam wells in the Taupo volcanic zone, New Zealand. Econ. Geol. 61, 1115 (1966).CrossRefGoogle Scholar
  45. Tatsumi, T.: Sulfur isotopic fractionation between coexisting sulfide minerals from Japanese ore deposits. Econ. Geol. 60, 1645 (1965).CrossRefGoogle Scholar
  46. Toland, W. G.: Oxidation of organic compounds with aqueous sulfate. J. Am. Chem. Soc. 82, 1911 (1960).CrossRefGoogle Scholar
  47. Triiper, H. G.: Bacterial sulfate reduction in the Red Sea hot brines. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 263-271 (1969).Google Scholar
  48. Trudge, A. P. and H. G. Thode: Thermodynamic properties of isotopic compounds of sulphur. Canad. J. Res., 28B, 567 (1950).CrossRefGoogle Scholar
  49. Turekian, K. K. and K. H. Wedepohl: Distribution of the elements in some major units of the earth’s crust. Bull. Geol. Soc. Amer. 72, 175 (1961).CrossRefGoogle Scholar
  50. Vlasov, K. A.: Geochemistry of rare elements. Translated by Israel Program for Scientific Translations, Jerusalem. 1, 552 (1966).Google Scholar
  51. Watson, S. W. and J. B. Waterbury: The sterile hot brines of the Red Sea. In: Hot brines and recent heavy metal deposits in the Red Sea, E. T. Degens and D. A. Ross (eds.). Springer-Verlag New York Inc., 272-281 (1969).Google Scholar
  52. White, D. E.: Ore forming fluids of diverse origins. Econ. Geol. 63, 301 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • I. R. Kaplan
    • 1
  • R. E. Sweeney
    • 1
  • Arie Nissenbaum
    • 1
  1. 1.Department of Geology and Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations