Estimation of Radioimmunoassay Data Using Robust Nonlinear Regression Methods

  • H.-P. Altenburg


The paper discusses several nonlinear regression methods estimating contaminated radioimmunoassay data. The underlying model is an overdispersed Poisson process with four regression line parameters and one parameter related to the overdispersion of the variance. A generalized least-squares (GLS) algorithm can be used for parameter estimation of noncontaminated data. In the presence of outliers different methods are discussed such as L p -norm or nonlinear generalizations of Huber’s M-estimator. The best estimation results we get by a winsorized version of the GLS algorithm.


Ordinary Little Square Generalize Little Square Scale Estimate Result Parameter Estimate Good Estimation Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H.-P. Altenburg and G. Rosenkranz (1989): Analysis of dose response data. Schriftenreihe Medizinische Statistik, Biomathematik und Inform.-Verarbeitung, Heft 8, MannheimGoogle Scholar
  2. [2]
    R. Dutter and P.J. Huber (1981): Numerical Methods for the Nonlinear Robust Regression Problem. J. Statist. Comput. Simul., 13, 79–113.CrossRefGoogle Scholar
  3. [3]
    P.W. Holland and R.E. Welsch (1977): Robust Regression Using Iteratively Rew. Least-Squares. Commun. Statist.-Theor. Meth., A6, 813–827.Google Scholar
  4. [4]
    P.J. Huber (1981): Robust Statistics. Wiley, New York.CrossRefGoogle Scholar
  5. [5]
    P. McCullagh (1983): Quasi-likelihood functions. Annals of Statistics, 11, 59–67.CrossRefGoogle Scholar
  6. [6]
    P.J. Rousseeuw and A.M. Leroy (1987): Robust Regression and Outlier Detection. Wiley, New York.CrossRefGoogle Scholar
  7. [7]
    J.J. Tiede and M. Pagano (1979): The Application of Robust Calibration to Radioimmunoassay. Biometrics, 35, 567–574.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H.-P. Altenburg
    • 1
  1. 1.Fakultät für Klinische Medizin Mannheim, Med. Statistik, Biomathematik und InformationsverarbeitungUniversity of HeidelbergMannheimGermany

Personalised recommendations