Skip to main content

Model Search in Contingency Tables by CoCo

  • Conference paper

Abstract

CoCo1, a highly advanced program for analysis of complete and incomplete contingency tables, is presented.

In the paper a short presentation of CoCo is given. Incremental search by backward elimination and forward selection and the global search procedure from Edwards & Havránek (1985) is considered.

By incremental search a single minimal acceptable model is identified. By the principles of weakly accepted and weakly rejected the class of minimal acceptable models are found in the global search procedure. In CoCo each of the model searches can be done by a single command, or CoCo can be guided through the search in a highly user controlled model selection.

Keywords

  • Contingency Table
  • Forward Selection
  • Model Search
  • Graphical Search
  • Simple Undirected Graph

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-26811-7_33
  • Chapter length: 6 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-26811-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. (1974): A new look at the statistical model identification. IEEE Trans Auto. Control 19, 716–723.

    CrossRef  Google Scholar 

  • Asmussen, S. and Edwards, D. (1983): Collapsibility and response variables in contingency tables. Biometrika. 70, 567–78.

    CrossRef  Google Scholar 

  • Badsberg, J. H. (1991): A guide to CoCo. Res. Rep. R 91-43, Inst. Elec. Sys, Aalborg Univ. Denmark.

    Google Scholar 

  • Becker, R. A. Chambers, J. M. and Wilks, A. R. (1988): The New S Language, A Programming Environment for Data Analysis and Graphics. Wadsworth & Brooks / Cole Advanced Books & Software, Pacific Grove, California.

    Google Scholar 

  • Darroch, J. N. Lauritzen, S. L. and Speed, T. P. (1980): Markov fields and log-linear interaction models for contingency tables. Ann. Statist. 8, 3, 522–539.

    CrossRef  Google Scholar 

  • Dempster, A. P. (1972): Covariance Selection. Biometrika, 28, 157–175.

    Google Scholar 

  • Edwards, D. and Havránek, T. (1985): A fast procedure for model search in multidimensional contingency tables. Biometrika, 72, 339–51.

    CrossRef  Google Scholar 

  • Edwards, D. and Havránek, T. (1987): A fast model selection procedure for large families of models. J. Amer. Statist. Assoc. 82, 397, 205–213.

    CrossRef  Google Scholar 

  • Goodman, L. A. (1971): Partitioning of chi-square, analysis of marginal contingency tables, and estimation of expected frequencies in multidimensional contingency tables. J. Amer. Statist. Assoc. 66, 339–344.

    CrossRef  Google Scholar 

  • Greve, J. Højsgaard, S. Skjøth, F. and Thiesson B. (1992): BIFROST-A program for inducing block recursive models from a complete database. Res. Rep. R 92-2001, Inst. Elec. Sys, Aalborg Univ. Denmark.

    Google Scholar 

  • Kreiner, S. (1989): Graphical modelling using DIGRAM. Research Report 89/11, Statistical Research Unit, Univ of Copenhagen.

    Google Scholar 

  • Read, T. R. C. and Cressie, N. A. C. (1988): Goodness-of fit Statistics for Discrete Multi-variate Data. Springer-Verlag, New York.

    CrossRef  Google Scholar 

  • Rose, D. J. Tarjan, R. E. and Lueker, G. S. (1976): Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283.

    CrossRef  Google Scholar 

  • Schwarz, G. (1978): Estimating the dimension of a model. Ann. Stat. 6, 2, 461–464.

    CrossRef  Google Scholar 

  • Tarjan, R. E. and Yannakakis, M. (1984): Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13, 566–579.

    CrossRef  Google Scholar 

  • Tarjan, R. E. (1985): Decomposition by clique separators. Discrete Math. 55, 221–232.

    CrossRef  Google Scholar 

  • Tierney, L. (1991): LISP-STAT-An Object-Oriented Environment for Statistical Computing and Dynamic Graphics. Wiley, New York.

    Google Scholar 

  • Wermuth, N. (1976): Model search among multiplicative models. Biometrics, 32, 253–264.

    CrossRef  Google Scholar 

  • Whittaker, J. (1990): Graphical Models in Applied Multivariate Statistics. Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Badsberg, J.H. (1992). Model Search in Contingency Tables by CoCo. In: Dodge, Y., Whittaker, J. (eds) Computational Statistics. Physica, Heidelberg. https://doi.org/10.1007/978-3-662-26811-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26811-7_33

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-26813-1

  • Online ISBN: 978-3-662-26811-7

  • eBook Packages: Springer Book Archive