Advertisement

Erzeugung von Tumoren durch endogenhormonelle Faktoren

  • Walter Dontenwill
Part of the Handbuch der experimentellen Pharmakologie Handbook of Experimental Pharmacology book series (HEP, volume 16 / 13)

Zusammenfassung

Der Besprechung der endogen-hormonell bedingten Geschwülste soll zunächst ein formelles Einteilungsprinzip aller bösartigen Tumoren zugrunde gelegt werden. Ein solches Einteilungsprinzip kann nach histogenetischen oder kausalgenetischen Prinzipien erfolgen, es darf aber andererseits die Dignität der Geschwülste nicht vernachlässigen. Sinegmund hatte schon 1941 die Ansicht vertreten, daß ein großer Teil von dem, was damals noch als „gutartige Geschwulst“ bezeichnet wurde, nichts anderes als eine resorptiv und reparativ bedingte Gewebsproliferation darstelle, wozu unter anderem die Riesenzellepuliden und braunen Tumoren des Knochens sowie die Xanthome zu rechnen sind, oder daß es sich um „regulativ-kompensatorisch bedingte organische Proliferationen handele, die meist durch hormonelle Impulse in einer durchaus funktionsmäßigen Weise die Form in Bewegung bringen, ohne sie aufzulösen oder der ganzheitlichen Ordnung zu entziehen”. Zu diesen Proliferationen, die die Bezeichnung „Tumor“ nicht verdienen, rechnete er die Strumen der verschiedenen endokrinen Organe, die sog. Adenome der Prostata, die Fibroadenome der Mamma und die Myome des Uterus. Für die Frage, woran sich diese Proliferationen „anpassen” und wer sie „reguliert“, sind inzwischen in der in-und ausländischen Literatur so viele überzeugende Daten beigebracht worden, daß der Begriff der „Anpassungshyperplasie” sich fest eingebürgert hat, auch wenn er von manchen Autoren, die sich von der Vorstellung des Tumorösen in diesen Hyperplasien nicht trennen können, in „hyperplasiogenes Gewächs“ abgewandelt wird (Büngeler). Das unserer Betrachtung zugrunde gelegte Einteilungsprinzip wurde 1951 von Büngeler formuliert und sollte ein heuristisches Arbeitsprinzip, d. h. ein Versuch sein, zu klaren Begriffsbestimmungen in der Geschwulstpathologie zu gelangen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Büngeler, W.: Die Definition des Geschwulstbegriffes und die Abgrenzung der Hyperplasien gegenüber den Geschwülsten. Verh. dtsch. Ges. Path. 35, 10 (1951).Google Scholar
  2. Büngeler, W.: Geschwülste und regulierte abhängige Wachstumsstörungen (Hyperplasien) im Rahmen der Cellular-und Relationspathologie. Z. Krebsforsch. 58, 72 (1951).PubMedCrossRefGoogle Scholar
  3. Büngeler, W., u. W. DoNtenwill: Hormonell ausgelöste geschwulstartige Hyperplasien, hyperplasiogene Geschwülste und ihre Verhaltensweisen. Dtsch. med. Wschr. 1959, 1885.Google Scholar
  4. Furth, J.: Conditioned and Autonomous Neoplasms. A Review. Cancer Res. 13, 477–492 (1953).PubMedGoogle Scholar
  5. Yoshida, T.: Studien über das Ascites Hepatom. Zugleich ein Beitrag zum Begriff der cellulären Autonomie im Wachstum der malignen Geschwulst einerseits und der Individualität der einzelnen Geschwulst andererseits. Virchows Arch. Path. Anat. 330, 85 (1957).Google Scholar

a) Hypophyse

  1. Bahn, R., J. Furth, E. Anderson and E. Gadsden: Morphologic and Functional Changes Associated with Transplantable Acth-producing Tumors of Mice. Amer. J. Path. 33, 1075 (1957).PubMedGoogle Scholar
  2. Bates, R. W., K. H. Clifton and E. Anderson: Prolactin and thyrotrophin content of functional transplantable pituitary tumors. Proc. Soc. exp. Biol. (N. Y.) 93, 525–527 (1956).CrossRefGoogle Scholar
  3. Bielschowsky, F.: Chronic iodine deficiency as cause of neoplasia in thyroid and pituitary of aged rats. Brit. J. Cancer 7, 203 (1953).PubMedCrossRefGoogle Scholar
  4. Bielschowsky, F., and W. H. Hall: Carcinogenesis in parabiotic rats. Tumours of the ovary induced by acetaminofluorene in intact females joined to gonadectomized litter-mates and the reac-tion of their pituitaries to endogenous oestrogens. Brit. J. Cancer 5, 331 (1951).PubMedCrossRefGoogle Scholar
  5. Bielschowsky, F., and E. S. Horning: Aspects of endocrine carcinogenesis. Brit. med. Bull. 14, 106 (1958). BooT, L. M., G. RöPcke, and O. MÞHlbock: Prolactin-producing pituitary tumours arising in pituitary isografts in mice. Excerpta Medica International Congress Series No. 83. Proc. 2. intern. Congress of endocrinology London 1964.Google Scholar
  6. BiNgeler, W., U. W. Dontenwill: Hormonell ausgelöste geschwulstartige Hyperplasien, hyperplasiogene Geschwiilste and ihre Verhaltensweisen. Dtsch. med. Wschr. 1959, 1885.Google Scholar
  7. Burt, A. S., B. H. Landing and S. C. Sommers: Amphophil tumors of the hypophysis induced in mice by I 131. Cancer Res. 14, No. 7, 497 (1954).PubMedGoogle Scholar
  8. Christy, N. P., M. M. Dickie, W. B. Atkinson and G. W. Woolley: The pathogenesis of uterine lesions in virgin mice and in gonadectomized mice bearing adrenal cortical and pituitary tumors. Cancer Res. 11, 413 (1951).PubMedGoogle Scholar
  9. Clifton, K. H.: Problems in experimental tumorigenesis of the pituitary gland, gonads, adrenal cortices, and mammary glands: a review. Cancer Res. 19, 2 (1959).PubMedGoogle Scholar
  10. Clifton, K. H., and J. Furth: Hormonal influences on growth and somatotropic actions of autonomous mammotropes. Proc. Soc. exp. Biol. (N. Y.) 94, 809–814 (1957).CrossRefGoogle Scholar
  11. Clifton, K. H., and R. K. Meyer: Mechanism of anterior pituitary tumor induction by estrogen. Anat. Rec. 125, 65–81 (1956).PubMedCrossRefGoogle Scholar
  12. Cohen, A., and J. Furth: Corticotropin assay with transplantable adrenal tumors slices. Application to the assay of adrenotropic pituitary tumors. Cancer Res. 19, 72 (1959).PubMedGoogle Scholar
  13. Cramer, W., and E. S. Horning: Experimental production by oestrin of pituitary tumors with hypo-pituitarism. Lancet 1936 I, 247–249.CrossRefGoogle Scholar
  14. Cramer, W., and E. S. Horning: The effect of oestrin on the pituitary gland. Lancet 1936 I, 1056.CrossRefGoogle Scholar
  15. Cunningham, A. W. B., C E Hall and O. Hall: Neoplasia in parabiotics. J. Path. Bact. 68, 309 (1954).Google Scholar
  16. Deanesly, R.: Depression of hypophyseal activity by the implantation of tablets of oestrone andoestradiol. J. Endocr. 1, 36 (1939).CrossRefGoogle Scholar
  17. Deanesly, R., and A. S. Parkes: Further experiments of the administration of hormones by the subcutaneous implantation of tablets. Lancet 1938 II, 606.CrossRefGoogle Scholar
  18. Dent, J. N., E. L. Gadsden and J. Furth: On the relation between thyroid depression and pituitary tumor induction in mice. Cancer Res. 15, 72–75 (1955).Google Scholar
  19. Dent, J. N., E. L. Gadsden and J. Furth: Further studies on induction and growth of thyrotropic pituitary tumors in mice. Cancer Res, 16, 171–174 (1956).PubMedGoogle Scholar
  20. Dickie, M. M., and P. W. Lane: Adrenal tumors, pituitary tumors, and other pathological changes in Fl hybrids of strain DE X strain Dba. Cancer Res. 16, 48–52 (1956).PubMedGoogle Scholar
  21. Dickie, M. M., and G. W. Woolley: Spontaneous basophilic tumors of the pituitary glands in gonad-Google Scholar
  22. ectomized mice. Cancer Res. 9, 372–384 (1949).Google Scholar
  23. Dontenwill, W., u. M. Eder: Histogenese and biologische Verhaltensweise hormonell ausgelöster Geschwülste. Beitrag path. Anat. 120, 270 (1959).Google Scholar
  24. Dunning, W. F., and M. R. Curtis: The incidence of diethylstilbestrol-induced cancer in reciprocal Fl hybrids obtained from crosses between rats of inbred lines that are susceptible and resistant to the induction of mammary cancers by this agent. Cancer Res. 12, 702 (1952).PubMedGoogle Scholar
  25. Dux, C.: Recherches microscopiques sur les adénomes hypophysaires du rat. Bull. Cancer (Paris) 35, 201 (1948).Google Scholar
  26. Edelman, A., and A. Gorbman: Endocrine factors influencing the development of hypophyseal tumors in mice. Proc. Amer. Ass. Cancer Res. 2, 13–14 (1955).Google Scholar
  27. Egana, E., J. Szabo y S. Lecannelier: Acciones tóxicas y tumorfgenas del caprilato de estradiol en rata. Rev. chil. Hig. 3, 39 (1941).Google Scholar
  28. Furth, J.: Morphologic changes associated withthyrotrophin-secreting pituitary tumors. Amer. J. Path. 30, 421–463 (1954).PubMedGoogle Scholar
  29. Furth, J.: Thyroid-pituitary tumorigenesis. J. nat. Cancer Inst. 15, 687 (1954).PubMedGoogle Scholar
  30. Furth, J.: Experimental pituitary tumors. Recent Progr. Hormone Res. 11, 221 (1955).Google Scholar
  31. Furth, J.: Experimental pituitary tumors. In: G. Pincus (ed.), Recent Progr. Hormone Res. 11, 221–249 (1955).Google Scholar
  32. Furth, J.: Hormonal factors and tumor growth. Cancer Res. 17, 454 (1957).PubMedGoogle Scholar
  33. Furth, J., R. F. Buffett and E. L. Gadsden: On the pathogenesis of pituitary tumor induction by ionizing radiation. Proc. Amer. Ass. Cancer Res. 2, 204 (1957).Google Scholar
  34. Furth, J., and W. T. Burnett: Hormone-secreting transplantable neoplasms of the pituitary induced by I131. Proc. Soc. exp. Biol. (N. Y.) 78, 222 (1951).Google Scholar
  35. Furth, J., and W. T. Burnett, and E. L. Gadsden: Quantitative relationship between thyroid function and growth of pituitary tumors secreting Tsh. Cancer Res. 13, 298–307 (1953).PubMedGoogle Scholar
  36. Furth, J., and K. H. Clifton: Experimental pituitary tumors and the role of pituitary hormones in tumorigenesis of the breast and thyroid. Cancer 10, 842–853 (1957).PubMedCrossRefGoogle Scholar
  37. Furth, J., and K. H. Clifton: Experimental pituitary tumors. In: G. E. W. Wolstenholme and M. O’Connor (eds.), Ciba Foundation Colloquia on Endocrinology, 12, 3–17. London: J. and A. Churchill, Ltd. 1958.Google Scholar
  38. Furth, J., and K. H. Clifton: Experimental observations on mammotropes and the mammary gland. In: A. R. Cur-Google Scholar
  39. Rie and C. F. W. Illingworth (eds.), Endocrine Aspects of Breast Cancer, 276–282. Edinburgh: E. and S. Livingstone, Ltd. 1958.Google Scholar
  40. Rie and C. F. W. Illingworth, E. L. Gadsden and R. F. Buffett: Dependent and autonomous mammotropic pituitary tumors in rats; their somatotropic features. Cancer Res. 16, 608–616 (1956).Google Scholar
  41. Rie, J. N. Dent, W. T. Burnett and E. L. Gadsden: The mechanism of induction and the characteristics of pituitary tumors induced by thyroidectomy. J. clin. Endocr. 15, 81 (19 55).Google Scholar
  42. Rie, E. L. Gadsden and W. T. Burnett jr.: Autonomous transplantable pituitary tumors arising in growths dependent on absence of the thyroid gland. Proc. Soc. exp. Biol. (N. Y.) 80, 4–7 (1952).Google Scholar
  43. Rie, E. L. Gadsden, K. H. Clifton and E. Anderson: Autonomous mammotropic pituitary tumors in mice; their somatotropic features and responsiveness to estrogens. Cancer Res. 16, 600–607 (1956).Google Scholar
  44. Rie, and A. C. Upton: Acth-secreting transplantable pituitary tumors. Proc. Soc. exp. Biol. (N. Y.) 84, 253–254 (1953).CrossRefGoogle Scholar
  45. Gadsden, E. L., and J. Furth: Effect of thyroid hormone on growth of thyrotrophin-secreting pituitary tumors. Proc. Soc. exp. Biol. (N. Y.) 83, 511–514 (1953).CrossRefGoogle Scholar
  46. Gardner, W. U., and L. C. Strong: Strain-limited development of tumors of the pituitary gland in mice receiving estrogen. Yale J. Biol. Med. 12, 543–548 (1940).Google Scholar
  47. Gardner, W. U. The effect of estrogen on the incidence of mammary and pituitary tumors in hybrid mice. Cancer Res. 1, 345 (1941).Google Scholar
  48. Gardner, W. U. The effect of steroid hormones on experimental pituitary and gonadal tumorigenesis. Ciba Found. Coll. Endocr. 1, 52 (1952).Google Scholar
  49. Gilman, J., and C. Gilbert: Modulating action of the thyroid on oestrogen-induced pituitary tumors in rats. Nature (Lond.) 175, 724 (1955).CrossRefGoogle Scholar
  50. Gorbman, A.: Tumorous growths in the pituitary and tracheae following radiotoxic dosages of I131 Proc. Soc. exp. Biol. (N. Y.) 71, 237–240 (1949).Google Scholar
  51. Gorbman, A.: Factors influencing development of hypophyseal tumors in mice after treatment with radioactive iodine. Proc. Soc. exp. Biol. (N. Y.) 80, 538–540 (1952).CrossRefGoogle Scholar
  52. Gorbman, A.: Pituitary tumors in rodents following changes in thyroid function: a review. Cancer Res. 16, 99–105 (1956).PubMedGoogle Scholar
  53. Gorbman, A., and A. Edelman: The role of ionizing radiation in eliciting tumors of the pituitary gland in mice. Proc. Soc. exp. Biol. (N. Y.) 81, 348–350 (1952).CrossRefGoogle Scholar
  54. Griffin, A. C., H. L. Richardson, C. H. Robertson, M. A. O’Neal and J. D. Spain: The role of hormones in liver carcinogenesis. J. nat. Cancer Inst. (Suppl.). 15, 1623 (1955).Google Scholar
  55. Hall, C. E., O. Hall and A. W. B. Cunningham: Spontaneous neoplasia is female parabiotic rats. Tex. Rep. Biol. Med. 11, 448 (1953).PubMedGoogle Scholar
  56. Horning, E. S.: Endocrine factors involved in the induction, prevention and transplantation of kidney tumors in the male golden hamster. Z. Krebsforsch. 61, 1 (1956).PubMedCrossRefGoogle Scholar
  57. King, D. W., F. G. Bock, and G. E. MooRE: Dinitrophenol inhibition of pituitary adenoma formation in mice fed propylthiouracil. Proc. Soc. exp. Biol. (N. Y.) 112, 365–366 (1963.)Google Scholar
  58. Kirkman, H.: Steroid tumorigenesis. Cancer Chicago 10, 757 (1957).CrossRefGoogle Scholar
  59. Kirkman, H., and R. L. Bacon: Estrogen-induced tumors of the kidney. I. Incidence of renal tumors in intact and gonadectomized male golden hamsters treated with diethylstilbestrol. J. nat. Cancer Inst. 13, 745 (1952).Google Scholar
  60. Kirschbaum, A.: The role of hormones in cancer: Laboratory animals. Cancer Res. 17, 432 (1957).PubMedGoogle Scholar
  61. Koneff, A. A., H. D. MooN, M. E. Simpson, Ca. H. Li and H. M. EvAns: Neoplasms in rats treated with pituitary growth hormone. IV. Pituitary gland. Cancer Res. 11, 113 (1951).PubMedGoogle Scholar
  62. Kwa Hong Giog: An experimental study of Pituitary Tumours. Berlin-Göttingen-Heidelberg: Springer-Verlag 1961.Google Scholar
  63. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann and Cie. 1950.Google Scholar
  64. Lacassagne, A., et W. Nyka: Différence de réaction de l’hypophyse à l’administration de substances oestrogènes dans diverses lignées sélectionnées de souris. C. R. Soc. Biol. (Paris) 136, 1112 (1937).Google Scholar
  65. Lacour, F.: Studie über die Hypophyse von Ratten, bei denen nach Biskind Tumoren der Sexualdrüsen erzeugt worden waren. Bull. Ass. franç. Cancer 42, 421 (1951).Google Scholar
  66. Lipschutz, A.: Steroid hormones and tumors. Baltimore: Williams and Wilkins Comp. 1950.Google Scholar
  67. Lipschutz, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: W. Helfer and Sons, Ltd. 1957.Google Scholar
  68. Mayer, J., C. Zomzely and J. Furtii: Body composition and energetics in obesity induced in mice by adrenotropic tumors. Science 123, 184–185 (1956).PubMedCrossRefGoogle Scholar
  69. Mceuen, C. S., H. Selve and J. B. Collip: Some effects of prolonged administration of oestrin in Rats. Lancet 1936 I, 775–776.CrossRefGoogle Scholar
  70. Mceuen, C. S., H. Selve and J. B. Collip: A pigmented adenoma of the intermediate lobe in a rat chronically treated with oestrin. Proc. Soc. exp. Biol. (N. Y.) 40, 241 (1939).CrossRefGoogle Scholar
  71. Meyer, R. K., and K. H. Clifton: Effect of diethylstilbestrol-induced tumorigenesis on the secretory activity of the rat anterior pituitary gland. Endocrinology 58, 686–693 (1956).PubMedCrossRefGoogle Scholar
  72. Moon, H. D., M. E. Simpson and H. M. Evans: Inhibition of methylcholanthrene carcino-genesis by hypophysectomy. Science 16, 331 (1952).CrossRefGoogle Scholar
  73. Moon, H. D., M. E. Simpson, Cll. H. LI and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. Iii. Reproductive organs. Cancer Res. 10, 549 (1950).PubMedGoogle Scholar
  74. Moon, H. D., M. E. Simpson, Cll. H. LI and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. V. Absence of neoplasms in hypophysectomized rats. Cancer Res. 11, 535 (1951).PubMedGoogle Scholar
  75. Moon, H. D., M. E. Simpson, Cll. H. LI and H. M. Evans: Effect of pituitary growth hormone in mice. Cancer Res. 12, 448 (1952).PubMedGoogle Scholar
  76. Moore, G. E., E. L. Brackney and F. G. Bock: Production of pituitary tumors in mice by chronic administration of a thiouracil derivative. Proc. Soc. exp. Biol. (N. Y.) 82, 643 (1953).CrossRefGoogle Scholar
  77. Hlbock, O.: Karzinogenese, Endogenese und Exogenese. Krebsforschung und Krebs-bekämpfung. Band II. München-Berlin: Urban and Schwarzenberg 1957.Google Scholar
  78. Nelson, W. O.: The occurrence of hypophyseal tumors in rats under treatment with diethylstilbestrol. Proc. Amer. Physiol. Soc. 20, 210 (1941).Google Scholar
  79. Noble, R. L., and J. B. CoLlip: Regression of oestrogen-induced mammary tumors in female rats following removal of the stimulus. Canad. med. Ass. J. 44, 1–5 (1941).Google Scholar
  80. Norman, J.: On the relation between thyroid depression and pituitary tumor induction in mice. Rep. Cancer Res. 15, 70–75 (1955).Google Scholar
  81. Oberling, Cii., M. GUÉRin et P. Guerin: La production expérimentale de tumeurs hypophysaires chez le rat. C. R. Soc. Biol. (Paris) 123, 1152 (1936).Google Scholar
  82. Oberling, Cii., M. Guérin, M. Laplane DE Seze et M. Lacour: Production de tumeurs hypophysaires et mammaires chez le rat par injections de fulliculine seule ou associée à d’autres hormones. Extr. Bull. Cancer 3, 176–192 (1950).Google Scholar
  83. Richardson, F. L.: Incidence of mammary and pituitary tumors in hybrid mice treated with stilbestrol for varying periods. J. nat. Cancer Inst. 18, 813–830 (1957).PubMedGoogle Scholar
  84. Russfield, A. B., G. Friedler, and J. K. Frenkel: Biological Characteristics of two transplantable pituitary tumors of syrian hamsters. Cancer Res. 23, 720–724 (1963).PubMedGoogle Scholar
  85. Schelin, U., P. M. Lundin, and L. Bartholdson: Light and electron microscopic studies on an autonomous stilbestrol-induced pituitary tumor in rats. Endocrinology 75, 893–900 (1964).PubMedCrossRefGoogle Scholar
  86. Segaloff, A., and W. F. Dunning: The effect of strain, estrogen, and dosage on the reaction of the rat’s pituitary and adrenal to estrogenic stimulation. Endocrinology 36, 238 (1945).CrossRefGoogle Scholar
  87. Selve, H.: Atypical cell proliferation in the anterior lobe adenomas of estradiol-treated rats.Cancer Res. 4, 349 (1944).Google Scholar
  88. Spampinato, V.: Hypophysenadenome nach Oestrogenzufuhr bei der weißen Ratte. Endocrinologie 19, 367 (1950).Google Scholar
  89. Upton, A. C., and J. Furtii: Induction of pituitary tumors by means of ionizing irradiation. Proc. Soc. exp. Biol. (N. Y.) 84, 255 (1953).CrossRefGoogle Scholar
  90. Upton, A. C., and J. Furtii: Spontaneous and radiation-induced pituitary adenomas of mice. J. nat. Cancer Inst. 15, 1001 (1955).Google Scholar
  91. Vasquez-Lopez, E.: The relation of the pituitary gland and related hypotalamic centres in the hamster to prolonged treatment with oestrogens. J. Path. Bact. 56, 1 (1944).CrossRefGoogle Scholar
  92. Weil, A., and B. Zondek: The histopathology of the pituitary of the white rat injected with follicular hormone. Endocrinology 25, 114 (1939).CrossRefGoogle Scholar
  93. Wolfe, J. M., and A. W. Wright: Histologic effects induced in the anterior pituitary of the rat by prolonged injection of estrin with particular reference to the production of pituitary adenomata. Endocrinology 23, 200 (1938).CrossRefGoogle Scholar
  94. Yoxoro, K., J. Furth, and N. Haian-Ghera: Induction of mammotropic pituitary tumors by X-rays in rats and mice. The role of mammotropes in development of mammary tumors. Cancer Res. 21, 178–186 (1961).Google Scholar
  95. Zondek, B.: Tumour of the pituitary induced with follicular hormone. Lancet 1936 I, 776.CrossRefGoogle Scholar
  96. Zondek, B.: Hypophyseal tumours induced by estrogenic hormone. Amer. J. Cancer 33, 555 (1938).CrossRefGoogle Scholar

b) Schilddrüse

  1. Axelrad, A., and C. P. Leblond: Thyroid tumor induction in rats by a low iodine diet with and without 2-acetylaminofluorene. Ass. Cancer Res. 1, 2 (1953).Google Scholar
  2. Axelrad, A., and C. P. Leblond: Induction of thyroid tumors in rats by low iodine diet. Cancer 8, 339–367 (1955). Axhausen, H.: Zur Frage der Kropferzeugung bei Ziegen, Kaninchen, Meerschweinchen durch Fütterung verschiedener Kohlarten. Diss. Freiburg 1937.Google Scholar
  3. Berg, O., M. Gordon and A. Gorbman: Comparative effects of thyroidal stimulants and inhibitors of normal and tumorous thyroids in Xiphophorin fishes. Cancer Res. 14, 527 (1954).PubMedGoogle Scholar
  4. Bianchi, G. C.: Verhalten der Schilddrüse bei mit gekochtem Kohl gefütterten Kaninchen. Ein Beitrag zu den Saisonveränderungen der Schilddrüse. Beitr. path. Anat. 90, 539 (1933); Zbl. Path. 58, 247 (1933).Google Scholar
  5. Bielscxowsxy, F.: Tumors of the thyroid produced by 2-acetylaminofluorene and allylthiourea. Brit. J. exp. Path. 25, 90–95 (1944).Google Scholar
  6. Bielscxowsxy, F.: Experimental nodular goitre. Brit. J. exp. Path. 26, 270 (1945).Google Scholar
  7. Bielscxowsxy, F.: The carcinogenic action of 2-acetylaminofluorene and related compounds. Brit. med. Bull. 4, 406 (1947).Google Scholar
  8. Bielscxowsxy, F.: The role of thyroxine deficiency in the formation of experimental tumours of the thyroid. Brit. J. Cancer 3, 547 (1949).CrossRefGoogle Scholar
  9. Bielscxowsxy, F.: Chronic iodine deficiency as cause of neoplasia in thyroid and pituitary of aged rats. Brit. J. Cancer 7, 203–213 (1953).CrossRefGoogle Scholar
  10. Bielscxowsxy, F., W. E. Griesbach, W. H. Hall, T. H. Kennedy and H. D. Purves: Studies on experimental goitre: the transplantability of experimental thyroid tumours in the rat. Brit. J. Cancer 3, 541 (1949).CrossRefGoogle Scholar
  11. Bielscxowsxy, F., and W. H. Hall: Carcinogenesis in the thyroid-ectomized rat. Brit. J. Cancer 7, 358 (1953).CrossRefGoogle Scholar
  12. Bielscxowsxy, F., and E. S. Horning: Aspects of endocrine carcinogenesis. Brit. med. Bull. 14, 106 (1958).Google Scholar
  13. Brachetto-Brian, D., y R. Grinberg: Proceso histológico de los autoinjertos intra splenicos de tiroides en ratas tiroidectomizades. Rev. Soc. Biol. 27, 199 (1951).Google Scholar
  14. Cox, A. J., R. H. Wilson and F. DE Ens: The carcinogenetic activity of 2-acetylaminofluorene: characteristics of the lesions in albino rats. Cancer Res. 7, 647 (1947).Google Scholar
  15. Dalton, A. J., H. P. Morris and C. S. Dubnir: Morphologic changes in the organs of female C 3H mice after long-term ingestion of thiourea and thiouracil. J. nat. Cancer Inst. 9, 201 (1949).Google Scholar
  16. Dalton, A. J., H. P. Morris, M. J. Striebich, and C. S. Dubnik: Histologische Veränderungen bei Strain C-Mäusen nach langdauernder Fütterung mit Methylthiouracil. J. nat. Cancer Inst. 11, 391 (1950).PubMedGoogle Scholar
  17. Dempster, W. J., and I. Doniach: The survival of thyroid implants in relation to thyroid defiency. Arch. int. Pharmacodyn. 101, 398 (1955).Google Scholar
  18. Doniach, I.: The effects of radioactive iodine alone and in combination with methylthiouracil and acetylaminofluorene upon tumour production in the rat’s thyroid gland. Brit. J. Cancer 4, 223 (1950).PubMedCrossRefGoogle Scholar
  19. Doniach, I.: The effect of radioactive iodine alone and in combination with methylthiouracil upon tumor production in the rat thyroid gland. Brit. J. Cancer 7, 181–202 (1953).PubMedCrossRefGoogle Scholar
  20. Dontenwill, W.: Vergleichende Untersuchungen an in die Milz implantierten endokrinen Drüsen. Verh. dtsch. Ges. Path. 43, 243 (1959).Google Scholar
  21. Dontenwill, W., u. H. Ranz: Vergleichende Untersuchungen an Transplantaten endokriner Drüsen. Im Druck.Google Scholar
  22. Dosne DE Pasqialini, C., y R. E. Mancini: Injerto del tiroides en el bazo. Rev. Soc. argent. Biol. 27, 102 (1951).Google Scholar
  23. Dyke, J. H. Van: Influence of age on experimental thyroid tumorigenesis in female rats. Anat. Rec. 115, 377 (1953).Google Scholar
  24. Fortner, J. G., PH. George, and ST. S. Sternberg: Induced and spontaneous thyroid cancer in the Syrian (golden) hamster. Endocrinology 66, 364–376 (1960).CrossRefGoogle Scholar
  25. Furth, J.: Conditioned and autonomous neoplasms. A review. Cancer Res. 13, 477 (1953).PubMedGoogle Scholar
  26. Furth, J.: Thyroid-pituitary tumorigenesis. J. nat. Cancer Inst. 15, 687–691 (1954).PubMedGoogle Scholar
  27. Furth, J., W. T. Burnett and E. L. Gadsden: Quantitative relationship between thyroid function and growth of pituitary tumors secreting Tsh. Cancer Res. 13, 298 (1953).PubMedGoogle Scholar
  28. Goldberg, R. C., and I. L. Chaikoff: Development of thyroid neoplasms in the rat following a single injection of radioactive iodine. Proc. Soc. exp. Biol. (N. Y.) 76, 563–566 (1951).CrossRefGoogle Scholar
  29. Goldberg, R. C., and I. L. Chaikoff: Induction of thyroid cancer in the rat by radioactive iodine. Arch. Path. (Chicago) 53, 22 (1952).Google Scholar
  30. Goldberg, R. C., S. Lindsay, C. W.NichoLs, and I. L. Chaikoff: Induction of neoplasms in thyroid glands of rats by subtotal thyroidectomy and by the injection of one microcurie of Iiai Cancer Res. 24, 35–43 (1964).Google Scholar
  31. Gorbman, A.: Thyroidal and vascular changes in mice following chronic treatment with goitrogens and carcinogens. Cancer Res. 7, 746 (1947).PubMedGoogle Scholar
  32. Griepentrog, F.: Tumorartige Schilddrüsenveränderungen in chronisch-toxikologischen Tierversuchen mit Thiuramen. Beih. path. Anat. 126, 243–255 (1962).Google Scholar
  33. Hall, W. H.: The role of initiating and promoting factors in the pathogenesis of tumours of the thyroid. Brit. J. Cancer 2, 273 (1948).PubMedCrossRefGoogle Scholar
  34. Hall, W. H., and F. Bielschowsky: The development of malignancy in experimentally-induced adenomata of the thyroid. Brit. J. Cancer 3, 534 (1949).PubMedCrossRefGoogle Scholar
  35. Kracht, J.: Die Schilddrüse und ihre Beziehungen zum Hypophysenvorderlappen und zur Nebennierenrinde. Jahresbericht 1952/53 Tuberkulose-Forschungsinstitut Borstel S. 367.Google Scholar
  36. Kracht, J.: Þber Wechselbeziehungen zwischen Nebennierenrinde und Schilddrüse im Tierexperiment. Verh. dtsch. Ges. Path. 36, 202 (1952).Google Scholar
  37. Kracht, J.: Geschwulstartige Anpassungshyperplasien der Schilddrüse im Tierexperiment. Verh. dtsch. Ges. Path. 38, 372 (1954).Google Scholar
  38. Kracht, J., u. U. Kracht: Zur Histopathologie und Therapie der Schreckthyreotoxikose des Wildkaninchens. Virchows Arch. path. Anat. 321, 238 (1952).Google Scholar
  39. Kracht, J., u. H. Spaethe: Þber Wechselbeziehungen zwischen Schilddrüse und Nebennierenrinde. I. Mitt. Virchows Arch. path. Anat. 323, 174 (1953).Google Scholar
  40. Kracht, J., u. H. Spaethe: Þber Wechselbeziehungen zwischen Schilddrüse und Nebennierenrinde. II. u. Iii. Mitt. Virchows Arch. path. Anat. 323, 83, u. 323, 629 (1953).Google Scholar
  41. Lacour, F., C. Oberling et M. GUüRin: Tumeurs par greffe intrasplénique de thyroïde chez des rats thyroidectomisés. Bull. Ass. franç. Cancer 39, 390–396 (1953).Google Scholar
  42. Laqueur,G.L.: Knotige Hyperplasie der Schilddrüsen durch Thiouracil. Cancer Res.9,247 (1949). Marks, S, and L. K. Bustad: Thyroid neoplasms in sheep fed radioiodine. J. nat. Cancer Inst. 30, 661–673 (1963).Google Scholar
  43. Money, W. L.: The effect of thiouracil on the collection of radioactive iodine in exper. induced thyroid tumors. Cancer 6, Nr. 1 (1953).Google Scholar
  44. Money, W. L., and R. W. RAwsoN: The experimental production of thyroid tumors in the rat exposed to prolonged treatment with thiouracil. Cancer 3, 321–335 (1950).CrossRefGoogle Scholar
  45. Moore, G. E., E. L. Brackney and F. G. Bock: Production of pituitary tumors in mice by chronic administration of a thiouracil derivative. Proc. Soc. exp. Biol. (N. Y.) 82, 643–645 (1953).CrossRefGoogle Scholar
  46. Morris, H. P.: Experimental thyroid tumors. In: The Thyroid. Brookhaven Symposia in Biology 7, 192 (1955); Upton, N. Y. Brookhaven National Laboratory.Google Scholar
  47. Morris, H. P., A. Dalton and C. Green: Malignant thyroid tumors occurring in the mouse after prolonged hormonal imbalance during the ingestion of thiouracil. J. clin. Endocr. 11, 1281–1295 (1951).PubMedCrossRefGoogle Scholar
  48. Morris, H. P., and C. D. Green: Role of thiouracil in the induction, growth and transplantability of mouse thyroid tumors. Science 114, 44 46 (1951).Google Scholar
  49. Oberling, CH., u. M. Guerin: Schilddrüsenhyperplasie und Struma bei Hühnern, die in Käfigen ohne Kies gehalten wurden. C. R. Soc. Biol. 121, Nr. 10, 947 (1936); Zbl. Path. 65, 328 (1936).Google Scholar
  50. Paschkis, K. E., A. Cantarow and J. Stasney: Influence of thiouracil on carcinoma induced, by 2-acetaminofluorene. Cancer Res. 8, 257 (1948).PubMedGoogle Scholar
  51. Paschkis, K. E., A. Cantarow and J. Stasney: Competitive action of 2-thiouracil and uracil in Aaf-induced cancer. Science 114, 264 (1951).PubMedCrossRefGoogle Scholar
  52. Pighini, G.: Schilddrüsenkröpfe, hervorgerufen durch Radiumemanation in Meerschweinchen Kaninchen und Tauben — mit und ohne Jodbehandlung. Riv. sper. Freniat. 60, 563 (1936); Zbl. Path. 68, 215 (1937).Google Scholar
  53. Purves, H. D., and W. E. Griesbach: Studies on experimental goitre. — Vii: Thyroid carcinomata in rats treated with thiourea. Brit. J. exp. Path. 27, 294 (1946); 28, 46 (1947).Google Scholar
  54. Purves, H. D., and W. E. Griesbach, and T. H. Kennedy: Studies in experimental goitre: malignant change in a transplantable rat thyroid tumour. Brit. J. Cancer 5, 301 (1951).PubMedCrossRefGoogle Scholar
  55. Rosin, A., and M. Rachmilewitz: The development of malignant tumors of the face in rats after prolonged treatment with thiourea. Cancer Res. 14, 494 (1954).Google Scholar
  56. Sellers, E. A., J. M. Hill and R. B. Lee: Effect of iodine and thyroid on the production of tumors of the thyroid and pituitary by propylthiouracil. Endocrinology 52, 188 (1953).PubMedCrossRefGoogle Scholar
  57. Studer, A.: Hemmung des Thiouratkropfes der Ratte durch synthetischen Vitamin A-Methyl-äther. Experientia (Basel) 4, 232–233 (1948).CrossRefGoogle Scholar
  58. TrautnzAFx, D. A., u. H. Hill: Die Beeinflussung von endokrinen Drüsen durch Methylthiouracil. Endokrinologie 27, 267 (1950).Google Scholar
  59. Zeckwer, I.: Wirkung der Kohlfütterung auf die Morphologie der Kaninchenschilddrüse. Amer. J. Path. 8, Nr. 2 (1932); Zbl. Path. 56, 119 (1932/33).Google Scholar

c) Epithelkörperchen usw.

  1. Eder, M.: Morphologische Untersuchungen über herdförmige Epithelkörperchenhyperplasien. Virchows Arch. path. Anat. 334. 301 (1961).Google Scholar
  2. Eder, M.: Experimentelle und histochemische Untersuchungen über herdförmige Hyperplasien im Epithelkörperchen. Virchows Arch. path. Anat. 334, 324 (1961).Google Scholar
  3. Eger, W.: Der experimentelle Hyperparathyroidismus. Verh. dtsch. Ges. inn. Med. 62, 403 (1956).Google Scholar
  4. Fassbender, H. G.: In Kaufmann: Lehrbuch der speziellen pathologischen Anatomie. Berlin: Walter de Gruyter 1956.Google Scholar
  5. Kracht, J.: Das Inselzellsystem bei Þber-und Unterfunktion der Nebennierenrinde. Verh. dtsch. Ges. Path. 40, 272 (1956).Google Scholar
  6. Seifert, G.: Die Pathologie des kindlichen Pankreas. Leipzig: Thieme 1956.Google Scholar
  7. Tonutti, E.: In Kaufmann: Lehrbuch der speziellen pathologischen Anatomie. Berlin: Walter de Gruyter 1956.Google Scholar
  8. Bernstein, D., and J. Enoch: Effect of hypoglycemia on rats with intrasplenic adrenal transplants. Proc. Soc. exp. Biol. (N. Y.) 78, 285 (1951).CrossRefGoogle Scholar
  9. Browning, H. C.: Hormonal dependence of adrenal cortical Tumors of CE and Balb/c mice in serial intraocular transfer. Cancer Res. 18, 781 (1958).PubMedGoogle Scholar
  10. Browning, H., W. White and W. Sadler’ Inhibition of growth of a transplanted adrenal cortical tumor by sex steroids. Cancer Res. 19, 819 (1959).PubMedGoogle Scholar
  11. Cardeza, A. F.: Histologia de los tumores de la suprarenal en ratas castradas. Rev. Soc. argent. Biol. 30, 200 (1954).PubMedGoogle Scholar
  12. Christy, N. P.: The pathogenesis of uterine lesions in virgin mice and in gonadectomized mice bearing adrenal cortical and pituitary tumors. Cancer Res. 11, No. 6 (1951).Google Scholar
  13. Dempster, W. J.: The transplanted adrenal gland. Brit. J. Surg. 42, 540 (1955).PubMedCrossRefGoogle Scholar
  14. Dickie, M. M., and P. W. Lane: Adrenal tumors, and other pathological changes in Fl hybrids of strain DE X strain Dba. Cancer Res. 16, 48 (1956).PubMedGoogle Scholar
  15. Dickie, M. M., and G. W. Woollen: Spontaneous basophilic tumors of the pituitary glands in gonadectomized mice. Cancer Res. 9, 372 (1949).PubMedGoogle Scholar
  16. Dontenwill, W., u. H. Ranz: Vergleichende Untersuchungen an Transplantaten endokriner Drüsen.Google Scholar
  17. Dorfman, R. I., and W. U. Gardner: Metabolism of the steroid hormones. The excretion of estrogenic material by ovariectomized mice bearing adrenal tumors. Endocrinology 34, 421–42’3 (1944).Google Scholar
  18. Dosne DE Pasqualini, CH., y R. E. Mancini: Injerto de suprarrenal en el bazo. Rev. Soc. argent. Biol. 27, 8 (1951); 27, 67 u. 72 (1951).Google Scholar
  19. Dunning, W. F., M. R. Curtis and A. Segaloff: Strain differences in response to diethylstilbestrol and the induction of mammary gland and bladder cancer in the rat. Cancer Res. 7, 511–521 (1947).Google Scholar
  20. Eränkö, O.: Nodular hyperplasia and increase of noradrenaline content in the adrenal medulla of nicotine-treated rats. Effect of insulin on chromaffin reaction, fluorescing islets and catechol amines in the adrenal medulla of the rat. Acta path. microbiol. scand. 36, 3 (1955).Google Scholar
  21. Everett, N. B.: Autoplastie and homoplastic transplants of the rat adrenal cortex and medulla to the kidney. Anat. Rec. 103, 335 (1949).PubMedCrossRefGoogle Scholar
  22. Fassbender, H.: Pathologische Anatomie der endokrinen Drüsen. In: Kaufmann: Lehrbuch der speziellen pathologischen Anatomie. Berlin: Walter de Gruyter and Co. 1956.Google Scholar
  23. Fekete, E., and C. C. Little: Histological study of adrenal cortical tumors in gonadectomized mice of the Ce strain. Cancer Res. 5, 220 (1945).Google Scholar
  24. Fekete, E., G. W. Wooley and C. C. Little: Histologic changes following ovarectomy in mice. J. exp. Med. 74, 1 (1941).PubMedCrossRefGoogle Scholar
  25. Ferguson, D. J., and M. B. Visscher: The effect of hypophysectomy on the development of adrenal tumors in C3 H mice. Cancer Res. 13, 405 (1953).PubMedGoogle Scholar
  26. Flaks, J.: Adrenal cortical carcinoma with metastases in an ovariectomized strong A mouse. J. Path. Bact. 61, 266 (1949).PubMedCrossRefGoogle Scholar
  27. Franks, L., and F. C. Chesterman: Experimental production of morphological changes resembling Conn’s Syndrome. Lancet 1956 II, 1193–1194.CrossRefGoogle Scholar
  28. Franks, L., and F. C. Chesterman: Adrenal degeneration and tumour formation in the golden hamster following treatment with stilboestrol and methylcholanthrene. Brit. J. Cancer 11, 105 (1957).PubMedCrossRefGoogle Scholar
  29. Frantz, M., and J. A. Kirschbaum: Androgenic secretion by tumors of the mouse adrenal cortex. Proc. Soc. exp. Biol. (N. Y.) 69, 357 (1948).CrossRefGoogle Scholar
  30. Frantz, M., and J. A. Kirschbaum: Development of adrenal cortical adenomas in ovariectomized mice injected with “physiologic” doses of sex hormone. Proc. Soc. exp. Biol. (N. Y.) 72, 282 (1949).CrossRefGoogle Scholar
  31. Frantz, M., and J. A. Kirschbaum: Sex hormone secretion by tumors of the adrenal cortex of mice. Cancer Res. 9, 257–266 (1949).PubMedGoogle Scholar
  32. Frantz, M., and J. A. Kirschbaum, and C. Casas: Endocrine interrelationship and spontaneous tumors of the adrenal cortex in NH mice. Proc. Soc. exp. Biol. (N. Y.) 66, 645–646 (1948).CrossRefGoogle Scholar
  33. Gardner, W. U.: Estrogenic effects of adrenal tumors of ovariectomized mice. Cancer Res. 1, 633 (1941).Google Scholar
  34. Gilman, J., Cu. Gilbert and I. Spence: Phaeochromocytoma in the rats. Pathogenesis and collateral reactions and its relation to comparable tumours in man. Cancer (Chicago) 6, 494 (1953).CrossRefGoogle Scholar
  35. Greep, R. O., and H. W. Deane: Histological, cytochemical and physiological observations on the regeneration of the rat’s adrenal gland following enucleation. Endocrinology 45, 42 (1949).PubMedCrossRefGoogle Scholar
  36. Houssay, A., G. M. Higgins and W. A. Bennet: The influence exerted by desoxycorticosterone acetate upon the production of adrenal tumors in gonadectomized mice. Cancer Res. 11, 297 (1951).PubMedGoogle Scholar
  37. Houssay, A. B., B. A. Houssay, A. F. Cardeza, R. M. Pinto and V. G. Foglia: Estrogenic adrenal tumors and gonadotrophic pituitary tumors in gonadectomized rats. 3rd Panamer. Congr. Endocrinol. ( Santiago de Chile ) 1954, p. 19.Google Scholar
  38. Houssay, A. B., B. A. Houssay, V. G. Foglia, A. B. Houssay y R. M. Pinto: Evolución anatomica y funcional de los tumores suprarenales de las ratas castradas. Rev. Soc. argent. Biol. 29, 170–179 (1953). Evolution anatomique et fonctionelle des tumeurs surrénales chez les rats castrés. C. R. Soc. Biol. (Paris) 148, 918–919 (1954).Google Scholar
  39. Houssay, B. A., A. F. Cardeza, R. M. Pinto y M. H. Burgos: Tumores suprarenales y acciones estrogénicas en ratas castradas. Rev. Soc. argent. Biol. 27, 56 (1951).PubMedGoogle Scholar
  40. Houssay, B. A., A. B. Houssay, A. F. Cardeza, V. G. Foglia and R. M. Pinto: Adrenal tumors in gonadectomized rats. Acta physiol. lat.-amer. 3, 125 (1953).PubMedGoogle Scholar
  41. Hummel, K. P.: Induced ovarian and adrenal tumours. J. nat. Cancer Inst. 15, 711 (1954).PubMedGoogle Scholar
  42. Huseby, R. A., and J. J. Bittner: The relationship of the inherited hormonal influence to the production of adrenal cortical tumors by castration. Cancer Res. 8, 641–651 (1948).Google Scholar
  43. Huseby, R. A., and J. J. Bittner: Postcastration adrenal changes and the subsequent development of mammary cancer in several inbred stocks of mice and their hybrids. Cancer Res. 10, 226 (1950).Google Scholar
  44. Huseby, R. A., and J. J. Bittner: Differences in adrenal responsiveness to post-castrational alteration as evidenced by transplanted adrenal tissue. Cancer Res. 11, No. 12, 954 (1951).PubMedGoogle Scholar
  45. Ingle, D. J., and G. M. Higgins: Autotransplantation and regeneration of the adrenal gland. Endocrinology 22, 458 (1938).CrossRefGoogle Scholar
  46. Jones, E. E., and L. J. Woodward: Spontaneous adrenal medullary tumors in hybrid mice. J. nat. Cancer Inst. 15, 449–461 (1954).PubMedGoogle Scholar
  47. King, J. T., C. B. Casas and M. B. Visscher: The influence of estrogen on cancer incidence and adrenal changes in ovariectomized mice on caloric restriction. Cancer Res. 9, 436–437 (1949).PubMedGoogle Scholar
  48. Kirkman, H.: Steroid Tumorigenesis. Cancer Res. 10, 754 (1957).Google Scholar
  49. Kirkman, H., and M. Robbins: The carcinogenicity of testosterone propionate in Syrian hamster. Proc. Amer. Ass. Cancer Res. 2, 125 (1956).Google Scholar
  50. Lasnitzki, I.: The effect of estrogen alone and combined with 20-methylcholanthren of mouse prostate glands grown in vitro. Cancer Res. 14, 632 (1954).PubMedGoogle Scholar
  51. Liebegott, G.: Die Pathologie der Nebennieren. Verh. dtsch. Ges. Path. 36, 21 (1952).Google Scholar
  52. Liebegott, G.: In: Pathologie der Laboratoriumstiere. Herausgegeben von D. Cohrs, R. JaffÉ u. H. Meessen. Berlin-Göttingen-Heidelberg: Springer 1958.Google Scholar
  53. Lipschutz, A.: Steroid Hormons and Tumors. Baltimore: Williams and Wilkins Comp. 1950.Google Scholar
  54. Lipschutz, A.: Steroid Homeostasis Hypophysis and Tumorigenesis. Cambridge: W. Heifer and Sons, Ltd. 1957.Google Scholar
  55. Lupulescu, A.: Phäochromozytome nach gleichzeitiger Verabreichung von Oestradiol und somatotropem Hormon bei Meerschweinchen. Endokrinologie 48, 164–170 (1965).Google Scholar
  56. Artinez, C., and J. J. Bittner: Postcastrational adrenal tumors in unilaterally adrenal-ectomized C 3H mice. Cancer Res. 15, 612 (1955).Google Scholar
  57. Artinez, C., Función estrogénica de los tumores suprarenales producidos por la castration en ratones. Rev. argent. En doer. 2, 40 (1956).Google Scholar
  58. Monsen, H.: Effect of cortisone and sex steroids on the induction and maintenance of castration induced adrenal cortical adenomas of mice. Cancer Res. 12, 284–285 (1952).Google Scholar
  59. Monsen, H., and A. Kirschbaum: Pituitary-adrenal gonadal interrelationship in the maintenance of adrenal cortical tumors of mice as determined by parabiosis. Proc. Amer. Ass. Cancer Res. 1, 33–34 (1954).Google Scholar
  60. Moon, H. D., A. A. Koneff, CH. H. Li and M. E. Simpson: Pheochromocytomas of adrenals in male rats chronically injected with pituitary growth hormone (22667). Proc. Soc. exp. Biol. 93, 74–77 (1956).PubMedCrossRefGoogle Scholar
  61. Moon, H. D., A. A. Koneff, M. E. Simpson, CH. H. Li and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. II. Adrenal glands. Cancer Res. 10, 364 (1950).PubMedGoogle Scholar
  62. Morris, D. M.: Adrenal hypertrophy in the white leghorn cockerel after treatment with thiouracil and thyroidectomy. Science 16, 117, 61 (1953).CrossRefGoogle Scholar
  63. Read, G.: Adrenal transplants into spleen and the inaktivation of adrenal cortical hormones. Aust. J. exp. Biol. med. Sci. 23, 161 (1951).Google Scholar
  64. Silberberg, R., M. Silberberg and M. Opdyke: Effects of anterior hypophysis on mammary glands and adrenals. A. M. A. Arch. Path. 55, 506–515 (1953).PubMedGoogle Scholar
  65. Smith, F. W.: The relationship of the inherites hormonal influence to the production of adrenal cortical tumors by castration. Cancer Res. 8, 641 (1948).PubMedGoogle Scholar
  66. Smith, F. W., W. U. Gardner, M. H. Li and H. Kaplan: Adrenal medullary tumors (Pheochromocytomas) in mice. Cancer Res. 9, 193–198 (1949).PubMedGoogle Scholar
  67. Spiegel, A.: Auftreten von Adenomen der Nebennierenrinde mit vermännlichender Wirkung bei frühkastrierten Meerschweinchenmännchen. Klin Wschr. 1939, 1068; Zbl. allg. Path. path. Anat. 74, 328 (1940).Google Scholar
  68. Spiegel, A.: Uber das Auftreten von Geschwülsten der Nebennierenrinde mit vermännlichender Wirkung bei frühkastrierten Meerschweinchenmännchen. Virchows Arch. path. Anat. 305, 2, 367 (1939); Zbl. allg. Path. path. Anat. 77, 249 (1941).Google Scholar
  69. Staemmler, M.: Die chronische Vergiftung mit Nicotin. Ergebnisse experimenteller Untersuchungen an Ratten. Virchows Arch. path. Anat. 295, 366 (1935).Google Scholar
  70. Staemmler, M.: Þber geschwulstartige Bildungen im Nebennierenmark als Folge exper. Nikotinvergiftung. Klin Wschr. 12, 404 (1936).CrossRefGoogle Scholar
  71. Toxutti, E.: Normale Anatomie der endokrinen Drüsen und endokrine Regulation. In: Kaufmann: Lehrbuch der speziellen pathologischen Anatomie. Berlin: Walter de Gruyter and Co. 1956.Google Scholar
  72. Williams, R. G.: Studies of adrenal cortex: regeneration of the transplanted gland and the vital quality of autogenous grafts. Amer. J. Anat. 81, 199 (1947).PubMedCrossRefGoogle Scholar
  73. Woodruff, M. F., and TR. Boswell: The effect of cortisone and Acth on adrenal transplantats in the rat. J. Endocr. 10, 86 (1953).PubMedCrossRefGoogle Scholar
  74. Woolley, G. W.: The incidence of adrenal cortical carcinoma in gonadectomized male mice of the extreme dilution strain. Cancer Res. 5, 211 (1945).Google Scholar
  75. Woolley, G. W.: The incidence of adrenal cortical carcinoma in male mice of the extreme dilution strain over one year of age. Cancer Res. 5, 506 (1945).Google Scholar
  76. Woolley, G. W.: The adrenal cortex and its tumors. Ann. N. Y. Acad. Sci. 50, 616–626 (1949).PubMedCrossRefGoogle Scholar
  77. Woolley, G. W.: Effect of hormonal substances on adrenal cortical tumors formation in mice. Cancer Res. 10, 250 (1950).Google Scholar
  78. Woolley, G. W.: Experimental endocrine tumors with special reference to the adrenal cortex. Recent Progr. Hormone Res. 5, 383 (1950).Google Scholar
  79. Woolley, G. W.: Evidence that adrenal cortical tumors in aged, gonadectomized hamsters produce sexlike hormones. Anat. Rec. 115, 381 (1953).Google Scholar
  80. Woolley, G. W.: Carcinogenesis in the adrenal. J. nat. Cancer Inst. 15, 717 (1954).PubMedGoogle Scholar
  81. Woolley, G. W.: Tumors of the adrenal cortex. In: G. E. W. Wolstenholme and M. O’Coxxor (eds.), Ciba Found. Coll. Endocrinol. 12, 122–133 (1958). ( London: J. and A. Churchill, Ltd. )Google Scholar
  82. Woolley, G. W., M. M. Dichte and C. C. Little: Adrenal tumors and other pathological changes in reci- procal crosses in mice. I. Strain Dba x Strain CE and the reciprocal. Cancer Res. 12, 142–152 (1953).Google Scholar
  83. Woolley, G. W., M. M. Dichte, Adrenal tumors and other pathological changes in reciprocal crosses in mice. II. An introduction to results of four reciprocal crosses. Cancer Res. 13, 231–245 (1953).PubMedGoogle Scholar
  84. Woolley, G. W., E. Fekete and C. C. Little: Differences between high and low breast tumor strains of mice when ovariectomized at birth. Proc. Soc. exp. Biol. (N. Y.) 45, 796 (1940). Gonadectomy and adrenal tumors. Science 97, 291 (1943).Google Scholar
  85. Woolley, G. W., and C. C. Little: The incidence of adrenal cortical carcinoma in gonadectomized female mice of the extreme dilution strain. Cancer Res. 5, 193, 203, 321 (1945).Google Scholar
  86. Woolley, G. W.,,The incidence of adrenal cortical carcinoma in gonadectomized male mice of the extreme dilution strain. Cancer Res. 5, 211, 506 (1945).Google Scholar
  87. Woolley, G. W., and C. C. Little: Prevention of adrenal cortical carcinoma by diethylstilbestrol. Cancer Res. 6, 491 (1946).Google Scholar
  88. Yeakel, E. H.: Medullary hyperplasia of the adrenal gland in aged wistar albino and gray norway rats. Arch. Path. (Chicago) 44, 71 (1947).Google Scholar

e) Mamma

  1. Bonser, G. M.: The effect of oestrone administration on the mammary glands of male mice of two strains differing greatly in their susceptibility to spontaneous mammary carcinoma. J. Path. Bact. 42, 169 (1936).CrossRefGoogle Scholar
  2. Copeland, M. M.: Newer aspects of benign tumors of breast. Arch. Surg. (Chicago) 55, 590 (1947).CrossRefGoogle Scholar
  3. Dunn, T. B.: Morphology of mammary tumors in mice. In: F. Homburger and W. H. Fishman (eds.). Physiopathology of cancer S. 123–148, New York: Hoeber-Harper Co. 1953.Google Scholar
  4. Eisen, M. J.: The occurrence of benign and malignent mammary lesions in rats treatet with crystalline estrogene. Cancer Res. 2, 632 (1944).Google Scholar
  5. Fischer, W., u. I. KüHL: Geschwülste der Laboratoriumstiere. Dresden and Leipzig: Theodor Steinkopff 1958.Google Scholar
  6. Florentin, P., et C. Binder: Métaplasie sébacée de la glande mammaire chez le cobaye folliculinisé. C. R. Soc. Biol. (Paris) 130, 360 (1939).Google Scholar
  7. Foules, L.: Mammary tumours in hybrid mice: growth and progression of spontaneous tumours. Brit. J. Cancer 3, 345 (1949).CrossRefGoogle Scholar
  8. Foules, L.: The histologic analysis of mammary tumors of mice. I. Scope of investigations and general principles of analysis. II. The histology of responsiveness and progression. The origin of tumors. Iii. Organoid tumors. IV. Secretion. J. nat. Cancer Inst. 17, 701–802 (1956).Google Scholar
  9. Geschickter, C. F.: Estrogenic mammary cancer in the rat. Radiology 33, 439 (1939).Google Scholar
  10. Geschickter, C. F.: Mammary carcinoma in the rat with metastasis induced by estrogen. Science 89, 35 (1939).PubMedCrossRefGoogle Scholar
  11. Geschickter, C. F.: Corpus luteum studies. Progesterone therapy in chronic cystic mastitis. J. clin. Endocr. 1, 147 (1941).CrossRefGoogle Scholar
  12. Geschickter, C. F., and E. W. Byrnes: Factors influencing the development and time of appearance of mammary cancer in the rat in response to estrogen. Arch. Path. (Chicago) 33, 334–356 (1942).Google Scholar
  13. Heiman, J.: Comparative effects of estrogen, testosterone and progesterone on benign mammary tumors of the rat. Cancer Res. 3, 65 (1943).Google Scholar
  14. Herold, L., u. G. Effkemann: Beziehungen des Follikelhormons zu pathophysiologischen Wachstumsvorgängen der Brustdrüse. I. Mitt. Brustdrüsenentwicklung unter gesteigerter Zufuhr von Follikelhormon bei der Ratte. Arch. Gynäk. 163, 1, 85 (1936).CrossRefGoogle Scholar
  15. Herold, L., u. G. Effkemann: Beziehungen des Follikelhormons zu pathophysiologischen Wachstumsvorgängen der Brustdrüse. II. Mitt. Tierexperimentelle Untersuchungen über die Bedeutung einer langdauernden und vermehrten Follikelhormonwirkung in der Genese der Fibrosis Mammae cystica. Arch. Gynäk. 163, 1, 94 (1936).CrossRefGoogle Scholar
  16. Herold, L., u. G. Effkemann: Beziehungen des Follikelhormons zu pathophysiologischen Wachstumsvorgängen der Brustdrüse. Iii. Mitt. Unterschiedliche Wirkung einer langdauernden Follikelhormonzufuhr auf die Brustdrüsenstruktur kastrierter und nichtkastrierter Ratten. Arch. Gynäk. 163, 1, 309 (1936).CrossRefGoogle Scholar
  17. Huggins, C., and K. Mainzer: Hormonal influences on mammary tumors of the rat. II. Retardation of growth of a transplanted fibroadenoma in intact female rats by steroids in the androstane series. J. exp. Med. 105, 485–500 (1957).PubMedCrossRefGoogle Scholar
  18. Klein, F.: Þber den Einfluß von Follikulin auf einige Organe des Meerschweinchenbockes. Frankfurt. Z. Path. 51, 2, 406 (1938).Google Scholar
  19. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann and Co. 1950.Google Scholar
  20. Lewis, D., and C. F. Geschickter: The demonstration of hormones in tumors. Ann. Surg. 104, 787 (1936).PubMedCrossRefGoogle Scholar
  21. Lipschutz, A.: Steroid Hormones and Tumors. Baltimore: Williams and Wilkins Comp. 1950. Loeb, L., E. L.Google Scholar
  22. Burns, V. Suntzeff and M. Moscop: Sexhormones and their relation to tumor production. Amer. J. Cancer 30, 47 (1937).CrossRefGoogle Scholar
  23. Moers, F. E.: Effect of estrogens and androgens on growth of mammary fibroma in rats. Proc. Soc. exp. Biol. (N. Y.) 43, 270–272 (1940).CrossRefGoogle Scholar
  24. Moon, H. D., M. E. Simpson, CH. H. Li and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. Iii. Reproductive organes. Cancer Res. 10, 549 (1950).PubMedGoogle Scholar
  25. Morris, H. P.: Influence of gonadotrophin on pyridoxine deficient and diet-restricted female mice. J. Nat. Cancer Inst. 14, No. 3 (1953).Google Scholar
  26. Noble, R. L., and J. H. Cutts: Mammary tumors of the rat. Cancer Res. 19, 1125 (1959).PubMedGoogle Scholar
  27. Picco, A.: Der Einfluß der Kastration auf die Entwicklung des Fibroadenoma mammae der Ratte. Tumori 22, 231 (1936); Zbl. Path. 65, 308 (1936).Google Scholar
  28. Pierson, H.: Neubildung von mammaähnlichem Bau in den äußeren Magenschichten des Kaninchens bei langdauernder Behandlung mit Follikulin. Z. Krebsforsch. 48, 3, 177 (1938); Zbl. Path. 73, 214 (1939).Google Scholar
  29. Prigozina, E. L.: Þber exper. Krebs und präcancerale Veränderungen der Brustdrüsen, bei Ratten durch Synoestrol hervorgerufen (über den exper. Krebs und präcanceröse Veränderungen der Milchdrüse bei der Ratte nach Synostrolbehandlung.) Arch. Path. 13, 2, 46 (1951) (russisch); Berichte 11, 194 (1952).Google Scholar
  30. Prigozina, E. L., u. L. M. Shabad: Experimentell durch wiederholte Schwangerschaft in den Milchdrüsen von Mäusen einer nichtkrebsigen Linie hervorgerufene Veränderungen. Arch. Path. (Chicago) 3, 43 (1950); Arch. Geschwulstforsch. 4, 1, 81 (1952).Google Scholar
  31. SabrazÈS, J., F. LE CxunTon et G. Gineste: Hyperplasie des glandes tégumentaires et adénomatose sudoripare après injections de folliculine chez le rat blanc. C. R. Soc. Biol. (Paris) 117, 30, 376 (1934).Google Scholar

f) Ovar

  1. Bali, T., and J. Furth: Morphological and biological characteristics of X-Ray induced transplantable ovarian tumors. Cancer Res. 9, 449–472 (1949).Google Scholar
  2. Bernstein, D. E., and G. R. Biskind: Effect of parahydroxypropiophenone on experimental ovarian tumors in rats. Proceedings of the Society for Experimental Biol. and Med. 79, 149 (1952).CrossRefGoogle Scholar
  3. Bielschowsky, F.: Neoplastic changes in grafted ovaries. A. R. Brit. Emp. Cancer Campgn. 29, 242 (1951).Google Scholar
  4. Bielschowsky, F., and W. H. Hall: The endocrine imbalance induced in female rats by autotransplantation of the ovary into the tail. Aust. J. exp. Biol. med. Sci. 31, 85 (1953). See also: Proc. Univ. Otago Med. Sch. 1952, 29, N. 3.Google Scholar
  5. Biskind, G. R., The inactivation of estradiol and estradiol benzoate in castrate female rats. Endocrinol. 28, 894 (1941).CrossRefGoogle Scholar
  6. Biskind, G. R., D. E. Bernstein and S. M. GosPE: The effect of exogenous gonadotrophins on the development of experimental ovarian tumors in rats. Cancer Res. 13, 216 (1953).PubMedGoogle Scholar
  7. Biskind, G. R., and M. S. Biskind: Experimental ovarian tumors in rats. Amer. J. clin. Path. 19, 501 (1949).Google Scholar
  8. Biskind, G. R., B. Kordan and M. S. Biskind: Ovary transplanted to spleen in rats: the effect of uni-lateral castration, pregnancy, and subsequent castration. Cancer Res. 10, 309–318 (1950).PubMedGoogle Scholar
  9. Biskind, G. R., and J. Mark: The inactivation of testosterone propionate and estrone in rats. Bull. Johns Hopk. Hosp. 65, 212 (1939).Google Scholar
  10. Biskind, G. R., R. Pencharz et M. S. Biskind: The pathogenesis of intrasplenic ovarian tumors in rats. Acta Un. int. Caner. 6, 97 (1948).Google Scholar
  11. Biskind, M. S., and G. R. Biskind: Development of tumors in the rat ovary after trans-plantation into the spleen. Proc. Soc. exp. Biol. (N. Y.) 55, 176–179 (1944).CrossRefGoogle Scholar
  12. Biskind, M. S., and M. C. Sheslesnyax: Effect of vitamin B complex defiency on inactivation of ovarian estrogen in the liver. Endocrinology 30, 819 (1942).CrossRefGoogle Scholar
  13. Boe, F., O. Togersen and A. Attramadal: Tumours produced by intrasplenic or intra-hepatic ovarian grafting. Acta endocr. (Kbh.) 17, 42 (1954).PubMedGoogle Scholar
  14. Brambell, F. W. R., A. S. Parkes and U. Fielding: Changes in the ovary of the mouse following exposure to X-rays. Proc. roy. Soc. B. 101, 29, 95, 316 (1927); 102, 385 (1928).Google Scholar
  15. Butterworth, J. S.: Observation on the histogenesis of ovarian tumors produced in mice by X-rays. Amer. J. Cancer 31, 85 (1937).Google Scholar
  16. Champy, CH.: Production de tumeurs ovariennes par la folliculine. C. R. Soc. Biol. (Paris) 125, 634 (1937).Google Scholar
  17. David, M., A. Jakobovits, K. Kovacs u. B. Korpassy: Beiträge zur Pathogenese der experimentellen Ovargeschwülste. Z. Krebsforsch. 62, 197 (1957).PubMedGoogle Scholar
  18. Dontenwill, W.: Vergleichende Untersuchungen an in die Milz implantierten endokrinen Drüsen. Verh. dtsch. Ges. Path. 43, Mannheim 243 (1959).Google Scholar
  19. Dontenwill, W., u. H. Ranz: Vergleichende Untersuchungen an Transplantaten endokriner Drüsen. Beitr. Path. Anat. 124, 229–241 (1961).Google Scholar
  20. Elliott, P. W., and E. HusNI: Ovarian transplants in abdominally placed testes of mice (Strain C 57). A.M.A. Arch. Path. 63, 621 (1957).Google Scholar
  21. Ely, A.: Effect of antigonadotrophic serum on recent intrasplenic ovarian implants of castrate mice. Endocrinology 59, 83–92 (1956).PubMedCrossRefGoogle Scholar
  22. Ely, A.: Inhibition of tumor formation in ovarian splenic implants after gonadotrophic antiserum. Cancer Res. 19, 37 (1959).PubMedGoogle Scholar
  23. Evans, H., M. Simpson and Cm H. LI: The gigantism produced in normal rats by injection of the pituitary growth hormone, body growth and organ changes. Growth 12, 15 (1948).PubMedGoogle Scholar
  24. Fels, E.: Injerto de ovario en ratas después de la castration y después de la ligadura ovarica. Rev. Soc. argent. Biol. 29, 148 (1953).PubMedGoogle Scholar
  25. Fels, E.: Aspectos morfológicos y funcionales de los tumores experimentales del ovario. Rev. argent. Endocr. 2, 1 (1956).Google Scholar
  26. Furth, J.: Transplantability of induced granulosa cell tumors and of luteoma in mice. Secondary effects of these growths. Proc. Soc. exp. Biol. (N. Y.) 61, 212–214 (1946).CrossRefGoogle Scholar
  27. Furth, J.: Relation of pregnancies to induction of ovarian tumors by X-rays. Proc. Soc. exp. Biol. (N. Y.) 71, 274 (1949).CrossRefGoogle Scholar
  28. Furth, J.: Radiation neoplasia and endocrine systems. Proc. 12 th Ann. Symp. Found Cancer Research, M. D. Anderson Tumor Clinic, Houston, Texas (in press).Google Scholar
  29. Furth, J., and M. C. BooN: Induction of ovarian tumors in mice by X-rays. Cancer Res. 7, 241 (1947).PubMedGoogle Scholar
  30. Furth, J., and J. S. Butterworth: Neoplastic diseases occurring among mice subjected to general irradiation with X-rays. — II. Ovarian tumors and associated lesions. Amer. J. Cancer 28, 66 (1936).Google Scholar
  31. Furth, J., and H. Sobel: Hypervolemia secondary to grafted granulosa-cell tumor. J. nat. Cancer Inst. 7, 103–113 (1946).PubMedGoogle Scholar
  32. Furth, J., and H. Sobel: Neoplastic transformation of granulosa cells in grafts of normal ovaries into spleens of gonadectomized mice. J. nat. Cancer Inst. 8, 7 (1947).PubMedGoogle Scholar
  33. Gardner, W. U.: Ovarian and lymphoid tumors in female mice subsequent to Roentgen-ray irradiation and hormone treatment. Proc. Soc. exp. Biol. (N. Y.) 75, 434 (1950).CrossRefGoogle Scholar
  34. Gardner, W. U.: Studies on ovarian and pituitary tumorigenesis. J. nat. Cancer Inst. 15, 693 (1954).PubMedGoogle Scholar
  35. Gardner, W. U.: Development and growth of tumors in ovaries transplanted into the spleen. Cancer Res. 15, 109 (1955).PubMedGoogle Scholar
  36. Gardner, W. U.: Some studies on ovarian tumorigenesis. Colloquia on Endocrinology (Ciba foundation) 12, 153 (1958).Google Scholar
  37. Gay: Zit. bei Lipschutz 1950.Google Scholar
  38. Gottschalk, R. G., and J. Furth: Polycythemia with features of cushing’s syndrome produced by luteomas. Acta haema. (Basel) 5, 100–123 (1951).CrossRefGoogle Scholar
  39. Greene, J. A.: The effect of hormone administration on the growth, morphology, secretion of a transplanted mouse granulosa-cell tumor. Cancer Res. 16, 417, 421 (1956).Google Scholar
  40. Greene, J. A.: Morphology and transplantability of ten ovarian neoplasms induced by intrasplenic ovarian grafting. Proc. Amer. Ass. Cancer Res. 2, 111 (1956).Google Scholar
  41. Greene, J. A.: Secretion and transplantability of ten mouse ovarian neoplasms induced by intrasplenic ovarian grafting. Cancer Res. 17, 86–91 (1957).Google Scholar
  42. Guthrie, M. J.: Tumorigenesis in intrasplenic ovaries in mice. Cancer 10, No. 1, 190 (1957). GYÖRgy, P.: Inactivation of estrone by liver. Assay method in vivo for dietary hepatic injury in rats. Proc. Soc. exp. Biol. (N. Y.) 60, 344 (1945).Google Scholar
  43. Heller, C G, and E. C. Junger: Regulation of ovarian growth Inhibition by estrogen or stimulation by gonadotrophins 9 Proc. Soc. exp. Biol. (N. Y.) 65, 152 (1947).Google Scholar
  44. Henderson, D.: Granulosa and theca cell tumors of the ovary. Amer. J. Obstet. Gynec. 43, 194 (1942).Google Scholar
  45. Iglesias, R., and E. Mardones: Twenty generations of a transplantable spontaneous functional ovarian granulosa-cell tumor in the rat. Cancer 9, 740 (1956).PubMedCrossRefGoogle Scholar
  46. Iglesias, R., and E. Mardones: The influence of the gonads and of certain steroid hormones on the growth of the spontaneous and transplantable ovarian tumor in Axc rats. Cancer Res. 16, 756–760 (1956).PubMedGoogle Scholar
  47. Iglesias, R., and E. Mardones, and A. Lipschutz: Evolution of luteoma in intrasplenic ovarian grafts in the guinea-pig. Brit. J. Cancer 7, 214 (1953).PubMedCrossRefGoogle Scholar
  48. Iglesias, R., and E. Mardones, and A. Lipschutz: The hormonal background of ovarian experimental tumorigenesis in the guinea-pig. Brit. J. Cancer 7, 221 (1953).PubMedCrossRefGoogle Scholar
  49. Johnson, D. C., and E. Witschi: Endocrinology of ovarian tumor formation in parabiotic rats. Cancer Res. 21, 783–789 (1961).PubMedGoogle Scholar
  50. Kaplan, H. S.: Influence of ovarian function on incidence of radiation-induced ovarian tumors in mice. J. nat. Cancer Inst. 11, 125–132 (1950).PubMedGoogle Scholar
  51. Klein, M.: Ovarian tumorigenesis following intrasplenic transplantation of ovaries from weanling, young adult, and senile mice. J. nat. Cancer Inst. 12, 877 (1952).PubMedGoogle Scholar
  52. Klein, M.: Induction of ovarian neoplasms following intrasplenic transplantation of ovarian grafts to old castrated mice. J. nat. Cancer Inst. 14, 77 (1953).PubMedGoogle Scholar
  53. Kulander, S.: The frequency of ovarian tumours and of estrus in mice treated with Roentgen radiation and hormones. Acta radiol. (Stockh.) 40, 479 (1953).CrossRefGoogle Scholar
  54. Kulander, S.: Studies in castrated female rats with ovarian tissue transplanted to the spleen. Acta endocrinol. (scand) supl. 22 (1954).Google Scholar
  55. Kulander, S.: Studies in spayed rats with ovarian tissue autotransplanted to the spleen. Iii. Development from the age of six months to one year in animals operated one at three weeks and the effect of administration of estrogens and of hypophysectomy. Acta Endocrinol. scand, supl. 27, Vol. 22 (1956).Google Scholar
  56. Lacour, F., CH. Oberling et M. Guérin: Tumeurs par greffe intrasplénique de thyroïde chez des rats thyroïdectomisés. Bull. Ass. franç. Cancer 39, 390 (1952).PubMedGoogle Scholar
  57. Lancker, J. Van, et J. Maisin: Le sort des greffes intraspléniques d’ovaires et testicules. Acta Un. int. Caner. 7, 354 (1950).Google Scholar
  58. Lancker, J. Van, et J. Maisin: Le sort des greffes intraspléniques chez le rat castré. C. R. Soc. Biol. (Paris) 147, 2053 (1953).Google Scholar
  59. Lancker, J. Van: Experimental studies on the pathogenesis of ovarian tumors in mice. Cancer Res. 7, 549 (1947).Google Scholar
  60. LI, M. H.: Malignant granulosa-cell tumor in an intrasplenic ovarian graft in a castrated male mouse. Amer. J. Obstet. Gynec. 55, 316 (1948).PubMedGoogle Scholar
  61. LI, M. H.: Tumors in intrasplenic ovarian transplants in castrated mice. Science 105, 13 (1947).PubMedCrossRefGoogle Scholar
  62. LI, M. H., and W. U. Gardner: Granulosa cell tumors in intrapancreatic ovarian grafts in castrated mice. Science 106, 608 (1947).CrossRefGoogle Scholar
  63. LI, M. H.: Further studies on the pathogenesis of ovarian tumors in mice. Cancer Res. 9, 35 (1949).PubMedGoogle Scholar
  64. LI, M. H.: Influence of age of host and ovaries on tumorigenesis in intrasplenic and intrapancreatic ovarian grafts. Cancer Res. 10, 162 (1950).PubMedGoogle Scholar
  65. Licx, L., A. Kirschbaum and H. W. Mixer: Mechanism of induction of ovarian tumors by X-rays. Cancer Res. 9, 535–536 (1949).Google Scholar
  66. Lipschutz, A.: Steroid hormones and tumors. Baltimore: The Williams and Wilkins Company 1950.Google Scholar
  67. Lipschutz, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: W. Heifer and Sons Ltd. 1957.Google Scholar
  68. Lipschutz, A.: Experimentelle Ovarialtumoren. Gynaecologia 156, 93–115 (1963).Google Scholar
  69. Lipschutz, A., and H. Cerisola: Ovarian tumours due to a functional imbalance of the hypophysis. Nature (Lond.) 193, 145–147 (1962).CrossRefGoogle Scholar
  70. Lipschutz, A., R. Iglesias, and S. Salinas: Ovarian tumours induced by a sterilizing steroid. Nature (Lond.) 196, 946–947 (1962).CrossRefGoogle Scholar
  71. Lipschutz, A., V. I. Panasevich, and A. Alvarez: New experimental evidence of tumorigenic hormonal imbalances. Nature (Lond.) 202, 503–504 (1964).CrossRefGoogle Scholar
  72. Lipschutz, A., H. Ponce DE LÉON, E. Woywood and O. Gay: Intrasplenic ovarian grafts in the guinea pig and the problem of neoplastic reactions of the graft. Rev. Canad. Biol. 5, 181 (1946); Nature (Lond.) 157, 551 (1946); Bol. Soc. Biol. Santiago 2, 36, 38 (1944).Google Scholar
  73. Mardones, E., R. Iglesias and A. Lipschutz: Granulosa cell tumors in intrasplenic ovarian grafts, with intrahepatic metastases, in guinea pigs at five years after grafting. Brit. J. Cancer 9, 409–417 (1955).PubMedCrossRefGoogle Scholar
  74. Mardones, E., and A. Lipschutz: On the influence of cortisone on the evolution of tumoural growth in intrasplenic ovarian grafts in two strains of mice. Brit. J. Cancer 10 (1956).Google Scholar
  75. Meio, R. H. DE, A. E. Rakoff, A. Cantarow and K. E. Paschkis: Mechanism of inactivation of a-estradiol by rat liver “in vitro”. Endocrinology 43, 97 (1948).CrossRefGoogle Scholar
  76. Miller, O J, and W. U. Gardner: The role of thyroid function and food intake in experimental ovarian tumorigenesis in mice. Cancer Res. 14, 220 (1954).PubMedGoogle Scholar
  77. Miller, O J., and C. A. Pfeiffer: Demonstration of increased gonadotrophic hormone production in castrated mice with intrasplenic ovarian grafts. Proc. Soc. exper. Biol. (N. Y.) 75, 178–181 (1950).CrossRefGoogle Scholar
  78. Mßhlbock, O.: Ovarian tumours in mice in parabiotic union. Acta endocr. (Kbh.) 12, 105 (1953).Google Scholar
  79. Hlbock, O.: Neuere experimentelle Untersuchungen über die Genese der Ovarialtumoren. Geburtsh. und Frauenheilk. 12, 289 (1952).Google Scholar
  80. Hlbock, O., R. Van Nie and L. Boson: The production of oestrogene hormones by granulosa cell tumors in mice. Colloquia on Endocrinology (Ciba foundation) Vol. 12, 78 (1958).Google Scholar
  81. Peckham, B. M., R. R. Greene and M. E. Jeffries: Granulosa cell tumors in female rats and rabbits. Science 107, 319 (1948).PubMedCrossRefGoogle Scholar
  82. Peckham, B. M., R. R. Greene: Experimentally produced granulosa-cell tumors in rats. Cancer Res. 12, 25 (1952).PubMedGoogle Scholar
  83. Peckham, B. M., R. R. Greene: Experimentally produced granulosa-cell tumors in rabbits. Cancer Res. 12, 654–656 (1952).PubMedGoogle Scholar
  84. Pincus, G., and D. W. Martin: Liver damage and estrogen inactivation. Endocrinology 27, 838 (1940).CrossRefGoogle Scholar
  85. Ranz, H.: Zur Histogenese der Granulosazelltumoren. Z. Krebsforsch. 63, 460 (1960).PubMedCrossRefGoogle Scholar
  86. Selye, H.: On the rôle of the liver in the detoxification of steroid hormones and artificial estrogens. J. Pharmacol. exp. Ther. 71, 236 (1941).Google Scholar
  87. Silberberg, M., R. Silberberg and H. V. Leidler: Effects of anterior hypophyseal transplants on intrasplenic ovarian grafts. Cancer Res. 11, 624–628 (1951).PubMedGoogle Scholar
  88. Takrwari, K.: The behaviour of the rat ovary after transplantation into the spleen. Proc. Japan Acad. 25, 25 (1949).Google Scholar
  89. Takrwari, K.: Intrasplenic ovarian grafts in cryptorchidized rats. Proc. Japan Acad. 26, 50 (1950).Google Scholar
  90. Takrwari, K.: Stimulation of ovaries of normal barabionts joined with spayed partners bearing intrasplenic ovarian grafts. Jap. J. Zool. 11, 35 (1953).Google Scholar
  91. Takrwari, K.: N. Takasugi and K. Maekawa: Ovaries of rats with gonadectomized intrasplenic ovarian grafts. Proc. Japan Acad. 28, 97 (1952).Google Scholar
  92. Wagenen, G. Van, and W. U. Gardner: Functional intrasplenic ovarian transplants in monkeys. Endocrinology 46, 265 (1950).PubMedCrossRefGoogle Scholar
  93. Wagenen, G. Van, Absence of hepatic inactivation of estrogen in the monkey. Yale J. Biol. Med. 25, No. 6 (1953).Google Scholar
  94. Zondek, B., A. Laufer and I. Tamari: Transplantation of a granulosa cell tumor into the spleen of castrated rats, treated with gonadotrophin. Proc. Soc. exp. Biol. (N. Y.) 84, 173 (1953).CrossRefGoogle Scholar
  95. Zulli, P.: Influenza di un estratto di milza sullo soiluppo del trapianto intrasplenico di ovaio. Folia endocr. (Pisa) 8, 877 (1955).Google Scholar

g) Uterus

  1. Allen, E., and W. U. Gardner: Cancer of the cervix of the uterus in hybrid mice following long-continued administration of estrogen. Cancer Res. 1, 359–366 (1941).Google Scholar
  2. Astwood, E. B., and R. O. Greep: A corpus luteum-stimulating substance in the rat placenta. Proc. Soc. exp. Biol. (N. Y.) 38, 713 (1938).CrossRefGoogle Scholar
  3. Awad, T.: Proliferación atipica de las mucosas mullerianas en un antropoide del nuevo mundo. Tesis Univ. de Chile 1946 (Public. Dep. Med. Exp. No. 48 ).Google Scholar
  4. Bacon, R. L.: Leiomyomas of the uterus in the hamster following treatment with diethylstilbestrol and testosterone. Anat. Rec. 109, 265 (1951).Google Scholar
  5. Barahona, M.: Aspectos cuantitativos del control de la función gonadotrófica de la hipófisis por el estrógeno, y su importancia para la patologia. Tesis Univ. de Chile 1949 (Public. Dep. Med. Exp. No. 70 ).Google Scholar
  6. Barks, O L, and M. D. Overholser: Hyperplasia and hypertrophy of the uterine musculature in ovariectomized rats following estrone injections. Anat. Rec. 70, 401 (1938).CrossRefGoogle Scholar
  7. Bellolio, P.: Estudio comparativo sobre la axión histerotrofíca y tumorígena del benzoate y diproprionato de estradiol. Tesis Univ. de Chile 1938.Google Scholar
  8. Bimes, M.: Recherches sur la fibromyomatose experimentale. Paris: Vigot 1945 (quoted from Duci Jing 1946, and Mosinger 1946 ).Google Scholar
  9. BO, W. J.: The origin and development of estrogen-induced uterine metaplasie. A.M.A. Arch. Path. 64, 595 (1957).Google Scholar
  10. Blandau, R. J.: Experimental production of endometrial polyps in the guinea pig. Cancer Res. 9, 526 (1949).PubMedGoogle Scholar
  11. Bruzzone, S.: Esterificaión y facultad tumorígena de un estrógena sintético (stilbestrol). Tesis. Univ. de Chile 1942.Google Scholar
  12. Bruzzone, S.: Producción de fibromas abdominales por estrógenos en animales impúberes. Bol. Soc. Biol. Santiago 1, 12 (1943).Google Scholar
  13. Bruzzone, S., H. Elgueta, R. Iglesias and A. Lipschutz: Oestrogen-induced fibroids of the thoracic serosa. Brit. J. Cancer 2, 267 (1948).PubMedCrossRefGoogle Scholar
  14. Bruzzone, S., F. Fuenzalida, R. Iglesias and A. Lipschutz: Antifibromatogenic action of steroids with special reference to pregnenolones. In: A. White ed., Steroids in Experimental and Clinical Practice. p. 72. Philadelphia: The Blakiston Co. 1951.Google Scholar
  15. Bruzzone, S., and A. Lipschutz: Tumorigenesis induced in the guinea-pig by ovarian fragmentation. Brit. J. Cancer 8, 613 (1954); See also 6th Int. Cancer Congr. ( São Paulo ) 1954, p. 170.Google Scholar
  16. Büngeler, W., U. W. Dontenwill: Hormonell ausgelöste geschwulstartige Hyperplasien, hyperplasiogene Geschwülste und ihre Verhaltensweisen. Dtsch. med. Wschr. 1959, 1885.Google Scholar
  17. Burrows, H., and E. Horning: Oestrogen and neoplasia. Oxford: Blackwell 1952.Google Scholar
  18. Busse, O., u. A. Hoevener: Ein Beitrag zur Frage des Zusammenhanges zwischen Hypophyse und Genitalcarcinom. Zbl. Gynäk. 1934, 1218.Google Scholar
  19. Cesa, I.: Wirkung des Follikel und Corpus Luteum Hormon auf die Cervixdrüsen. C. R. Soc. Biol. (Paris) 25, 1237 (1936).Google Scholar
  20. Chauchoix, J.: Hormone folliculaire et fibromatose. Paris: Vigot 1939.Google Scholar
  21. Champy, Chr.: Experimentelle Eierstocksgeschwülste mittels Follikulin. C. R. Soc. Biol. (Paris), 125, 634 (1937); Zbl. allg. Path. path. Anat. 69, 60 (1937).Google Scholar
  22. Christy, N. P., M. Dickie, W B Alkinson and G. W. Woolley: Þber die Pathogenese von Uterus-(Schleimhaut-)Läsionen jungfräulicher und gonadektomierter Mäuse, die Neben-nierenrinden-und Hypophysengeschwülste besitzen. Cancer Res. 11, 413 (1951).PubMedGoogle Scholar
  23. Clifton, K. H.: Problems in experimental tumorigenesis of the pituitary gland, gonads,adrenal cortices and mammary glands: a review. Cancer Res. 19, 2 (1959).PubMedGoogle Scholar
  24. Cruz, H.: Hiperplasia quístico-glandular del endometrio consecutiva a fragmentación ovârica. Bol. Soc. chil. Obstet. Ginec. 1, 194 (1936).Google Scholar
  25. Dahl-Iversen, E., CH. Hamburger and H. Jorgensen: Cystic glandular hyperplasia etc. in rhesus monkeys. Acta obstet. gynec. scand. 21, 315 (1942).Google Scholar
  26. Dessau, F.: Chronische Wirkungen oestrogener Stoffe am Meerschweinchenuterus. Arch. int. Pharmacodyn. 55, 402 (1937).Google Scholar
  27. Dessau, F.: Fortgesetzte Untersuchungen über chronische Oestronwirkungen am Meerschweinchen-uterus. Arch. int. Pharmacodyn. 58, 344 (1938).Google Scholar
  28. Ducuing, J. Le fibro-myome utérin. Cie, Paris: Masson 1946.Google Scholar
  29. Elgueta, H. R., R. Iglesias y S. Bruzzone: Fibromas de la serosa toracica inducidos por el estrógeno. Bol. Soc. Biol. Santiago 6, 36 (1948).Google Scholar
  30. Engle, E. T., C. Krakower and C. D. Haagensen: Estrogen administration to aged female monkeys with no resultant tumors. Cancer Res. 3, 858 (1943).Google Scholar
  31. Ershoff, B. F., and H. J. Deuel: Prolongation of pseudopregnancy by induction of deciduomata in the rat. Proc. Soc. exp. Biol. (N. Y.) 54, 167 (1943).CrossRefGoogle Scholar
  32. Febres, L.: Acciones tóxicas comparativas de los estrógenos en los roedores. Tesis Univ. de Chile 1944 (Public. Dep. Med. Exp. No. 34 ).Google Scholar
  33. Fischer, W., u. I. KÞHL: Geschwülste der Laboratoriumsnagetiere. Dresden u. Leipzig: Theodor Steinkopff 1958.Google Scholar
  34. Gardner, W. U., and E. Allen: Malignand and nonmalignand uterine vaginal lesions in mice receiving estrogen and androgens simultaneously. Yale J. Biol. and Med. 12, 213 (1939).Google Scholar
  35. Gardner, W. U.,WG. M. Smith and L. C. Strong: Zervixcarcinom bei Mäusen, die Oestrogen erhielten. J. Amer. med. Ass. 110, 15 (1938).Google Scholar
  36. Herold, L., u. G. Effkemann: Zur Frage der Epithelmetaplasie der Zervix-Korpusschleimhaut nach Zufuhr von Follikelhormon bei nichtkastrierten und kastrierten Ratten. Zbl. Gynäk. 2, 27 (1937).Google Scholar
  37. Hertz, R., C. D. Larsen and W. Tullner: Inhibition of estrogen-induced tissue growth with progesterone. J. nat. Cancer Inst. 8, 123 (1947).PubMedGoogle Scholar
  38. Hisaw, F. L., and F. C. Lendrum: Squamous metaplasia in the cervical glands of the monkey following oestrin administration. Endocrinology 20, 228 (1936).CrossRefGoogle Scholar
  39. Hofbauer, J.: Kausale Faktoren der genitalen präkancerösen Veränderungen. Zbl. Gynäk. 54, 2393 (1930).Google Scholar
  40. Hofbauer, J.: Hormonal gynaecological pathology and its clinical aspects. J. Obst. Gynaec. Brit. Emp. 46, 232 (1939).CrossRefGoogle Scholar
  41. Horning, E. S.: Quoted from annual report 1941–1942 of the imperial Cancer Research Fund. London 1942, p. 8.Google Scholar
  42. Iglesias, R., and A. Lipschutz: Effects of prolonged oestrogen administration in female new world monkeys, with observations on a pericardial neoplasm. J. Endocr. 5, 88 (1947).PubMedCrossRefGoogle Scholar
  43. Jadrijevi6, D., E. Mardones and A. Lipschutz: Antifibromatogenic activity of 19-nor- 17E-ethynyltestosterone. Proc. Soc. exp. Biol. (N. Y.) 91, 38 (1956).CrossRefGoogle Scholar
  44. Kaufmann, C: Þber die Wirkung fortgesetzter Zufuhr unphysiologischer Mengen Follikelhormon auf das Genitale weiblicher Ratten. Mschr. Geburtsh. Gynäk. 105, 188 (1937).Google Scholar
  45. Kaufmann, C, u. H. A. MÞLler: Bemerkung zu der Arbeit von Butenandt: Zur physiologischen Bedeutung des Follikelhormons und der östrogenen Wirkstoffe für die Genese des Brustdriisenkrebses und die Therapie des Prostata-Carcinoms. Dtsch. med. Wschr. 75, 1409 (1950). Zusammenfassung.Google Scholar
  46. Kaufmann, C., H. Muller, A. Butenandt U. H. Friedrich-Freksa: Experimentelle Bedeutung desFollikelhormons für die Carcinomentstehung. Z. Krebsforsch. 56, 482 (1949).CrossRefGoogle Scholar
  47. Kaufmann, C., u. E. Steinkamm: Þber die Wirkung fortgesetzter Zufuhr unphysiologischer MengenGoogle Scholar
  48. Follikelhormon auf das Genitale weiblicher Ratten. Arch. Gynäk. 162, 553 (1936). Kirkman, H.: Steroid Tumorigenesis. Cancer (Chic.) 10, 754 (1957).Google Scholar
  49. Kirschbaum, A.: The role of hormones in cancer: Laboratory animals. Cancer Res. 17, 432 (1957).PubMedGoogle Scholar
  50. Kirschbaum, A., F. D. Lawrason, H. S. Kaplan and J. J. Bittner: Influence of breeding on induction of mammary cancer with methylcholanthrene in strain Dba female mice. Proc. Soc. exp. Biol. (N. Y.) 55, 141 (1944).CrossRefGoogle Scholar
  51. Klein, F.: Þber den Einfluß von Follikulin auf einige Organe des Meerschweinchenbockes. Frankfurt. Z. Path. 51, 406 (1938).Google Scholar
  52. Koneff, A. A., H. D. Moow, M. E. Simpson, Cfi. H. Li and H. M. Evans: Þber Geschwülste bei Ratten, die mit hypophysärem Wachstumshormon behandelt wurden. Cancer Res. 11, 113 (1951).PubMedGoogle Scholar
  53. Korenchevsky, V., and M. Dennison: Histological changes in the organs of rats injected with oestrone alone or simultaneously with oestrone and testicular hormone. J. Path. Bact. 41, 323 (1935).CrossRefGoogle Scholar
  54. Krekels, A.: Einfluß hoher Follikelhormondosen auf chronisch arsenvergiftete Mäuse. Frankfurt. Z. Path. 49, H. 3 (1936); Zbl. allg. Path. path. Anat. 66, 160 (1936/37).Google Scholar
  55. Lacassagne, A.: Modifications progressives de la structure du conduit tubo-utérin chez des lapines soumises à partir de la naissance, à des injections répétées d’oestrone (folliculine). C. R. Soc. Biol. (Paris) 120, 685 (1935).Google Scholar
  56. Lacassagne, A.: Modifications progressives de l’utérus de la Souris sous l’action prolongée de l’oestrone. C. R. Soc. Biol. (Paris) 120, 1156 (1935).Google Scholar
  57. Lacassagne, A.: Tumeurs malignes apparues au cours d’un traitement hormonal combiné, chez des souris appartenant à des lignées réfractaires au cancer spontané. C. R. Soc. Biol. (Paris) 121, 607 (1936).Google Scholar
  58. Lacassagne, A.Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann Cie. 1950. Lipschutz, A.: Croissance atypique et destructive des glandes utérines après des interventions ovariennes expérimentales. C. R. Acad. Sci. (Paris) 203, 1025 (1936).Google Scholar
  59. Lacassagne, A.: Préhypophyse et ovaire chez le cobaye avec troubles expérimentaux du cycle sexuel. Arch. Biol. (Liège) 47, 181 (1936).Google Scholar
  60. Lacassagne, A.: Induction and prevention of abdominal fibroids by steroid hormones, and their bearing on growth and development. Cold Spr. Harb. Symp. quant. Biol. 10, 79 (1942).Google Scholar
  61. Lacassagne, A.: Steroid hormones and tumors. Baltimore: The Williams and Wilkins Company 1950.Google Scholar
  62. Lacassagne, A.: Experimentelle Forschung über endokrine Störungen und Geschwulstbildung. Munch. med. Wschr. 97, 1007, 1023 (1955).Google Scholar
  63. Lacassagne, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: Heifer and Sons, Ltd. 1957.Google Scholar
  64. Lacassagne, A., et R. Iglesias: Multiples tumeurs utérines et extragénitales provoquées par le benzoate d’oestradiol. C. R. Soc. Biol. (Paris) 129, 519 (1938).Google Scholar
  65. Lacassagne, A., et R. Iglesias, and L. Vargas: Uterine and extrauterine localizations of experimental fibroids induced in guinea pig by prolonged administration of estrogens. Proc. Soc. exp. Biol. (N. Y.) 45, 788 (1940).CrossRefGoogle Scholar
  66. Lacassagne, A., J. Luco and J. Zanartu: Quantitative aspects of the antifibromatogenic action of synthetic desoxycorticosterone acetate. Cancer Res. 2, 200 (1942).Google Scholar
  67. Lacassagne, A., and M. Maass: Progesterone treatment of uterine and other abdominal fibroids induced in the guinea pig by alpha-estradiol. Cancer Res. 4, 18 (1944).Google Scholar
  68. Lacassagne, A., E. Mardones, R. Iglesias, F. Fuenzalida and E. Bruzzone: Comparative antifibromatogenic action of cortical steroids. Science 116, 448 (1952).CrossRefGoogle Scholar
  69. Lacassagne, A., E. Mardones: Prevention of experimental uterine and extrauterine fibroids by testosterone and progesterone. Endocrinology 28, 669 (1941); O. Ruz, Lancet 2. 867 (1939).Google Scholar
  70. Lacassagne, A., E. Mardones: Structure and origin of uterine and extragenital fibroids induced experimentally in the guinea pig by prolonged administration of estrogens. Cancer Res. 1, 236 (1941).Google Scholar
  71. Lacassagne, A., L. Vargas, A. JedlicKY and P. Bellolio: The minimum quantity of estrogen required to induce atypical epithelial growth of the uterine mucosa in the guinea pig. Amer. J. Cancer 39, 185 (1940).Google Scholar
  72. Lacassagne, A., L. Vargas,, and C. NU EZ: Comparative antitumoral action of desoxycorticosterone acetate and testosterone propionate. Proc. Soc. exp. Biol. (N. Y.) 48, 271 (1941).Google Scholar
  73. Lacassagne, A.,, and J. Zanartu: Anti-fibromatogenic action of a natural cortical hormone (dehydrocorticosterone of Kendall). Endocrinology 31, 192 (1942).CrossRefGoogle Scholar
  74. Loeb, L., E. L. Burns, V. Suntzeff and M. MosxoP: Carcinoma-like proliferations in vagina, cervix and uterus of mouse treated with estrogenic hormones. Proc. Soc. exp. Biol. (N.Y.) 35, 320 (1936).CrossRefGoogle Scholar
  75. Loeb, L., E. L. Burns, V. Suntzeff and E. L. Burns: The effects of age and estrogen on the stroma of vagina, cervix and uterus in the mouse. Science 88, 432 (1938).PubMedCrossRefGoogle Scholar
  76. Loeb, L., E. L. Burns: Growth processes induced by estrogenic hormones in the uterus of the mouse. Amer. J. Cancer 34, 413 (1938).Google Scholar
  77. Mardones, E., R. Iglesias and A. Lipschutz: Comparative antifibromatogenic action of progesterone and 411-dehydroprogesterone. Experientia (Basel) 9, 303 (1953).CrossRefGoogle Scholar
  78. Migliavacca, A.: Inkretogene heterotype Epithelwucherungen im Uterus. Arch. Gynäk. 162, 595 (1936).CrossRefGoogle Scholar
  79. Migliavacca, A.: Beiträge und Beobachtungen für neue Richtlinien bei der Untersuchung der Beziehungen zwischen Geschlechtshormonen und Geschwulstentwicklung. Tumori 11, F. 2, 246 (1937); Zbl. allg. Path. path. Anat. 68, 188 (1937).Google Scholar
  80. Moon, H. D.: Geschwülste bei Ratten nach Behandlung mit Wachstumshormon des Hypophysenvorderlappens. II. Nebennieren. Cancer Res. 10, 364 (1950).Google Scholar
  81. Moon, H. D.: Rattengeschwülste nach Behandlung mit Hypophysenwachstumshormon. Iii. Fortpflanzungsorgane. Cancer Res. 10, 549 (1950).Google Scholar
  82. Moon, H. D.: Hypophysenwachstumshormon-Behandlung bei Ratten-Neoplasmen. V. Nichtvorhanden- sein von Neoplasmen bei hypophysektomierten Ratten. Cancer Res. 11, 535 (1951).PubMedGoogle Scholar
  83. Moon, H. D.: M. E. SimrsoN, CH. H. Li and H. M. Evans: Neoplasmen bei mit Hypophysenwachstumshormon behandelten Ratten. I. Lungen-und lymphatische Gewebe. Cancer Res. 10, 297 (1950).PubMedGoogle Scholar
  84. Moon, H. D.: M. E. SimrsoN, CH. H. Li and H. M. Evans: Rattengeschwülste nach Behandlung mit Hypophysenwachstumshormon.Iii. Fortpflanzungsorgane. Cancer Res. 10, 183 (1951/52).Google Scholar
  85. MoratÓ, J.: Adenofibromyomata in the uterus of a guinea pig after extreme partial castration. Endocrinology 29, 619 (1941).CrossRefGoogle Scholar
  86. Moricard, R., et J. Caucxoix: Réalisation de volumineux fibromes chez la femelle de cobaye par l’injection de benzoate de dihydrofolliculine. C. R. Soc. Biol. (Paris) 129, 556 (1938).Google Scholar
  87. Moricard, R., et J. Caucxoix: Fibromatose experimentale. Maroc. méd. No. 330, 31 (1952).Google Scholar
  88. Mosinger, M.: Le problème du cancer et son évolution récente. Paris: Masson and Cie. 1946. Cancers, tumeurs, bénignes et processus prolifératifs hyperplastiques et kystiques d’origine hormonale et cancérigène synthétique, chez le cobaye et le rat. Essais de transmission de la carcinorésistance du cobaye. Fol. anat. (Coimbra) 22, No. 8 (1947).Google Scholar
  89. Mosinger, M.: Sur les tumeurs oestrogènes et dyméthylbenzanthracéniques chez le Rat et le Cobaye. C. R. Ass. Anat. 55, 285–291 (1949).Google Scholar
  90. Nadel, E. M.: Fibroids in a guinea (family 13) after partial castration. J. nat. Cancer Inst. 9, 271 (1949).PubMedGoogle Scholar
  91. Nadel, E. M.: Histopathologie von durch Oestrogene induzierten Tumoren bei Meerschweinchen. J. nat. Cancer Inst. 10, 1043 (1950).PubMedGoogle Scholar
  92. Nelson, W. O.: Endometrial and myometrial changes, including fibromyomatous nodules, induced in the uterus of the guinea pig by the prolonged administration of estrogenic hormone. Anat. Rec. 68, 99 (1937).CrossRefGoogle Scholar
  93. Nelson, W. O.: Atypical uterine growths produced by prolonged administration of estrogenic hormones. Endocrinology 24, 50 (1939).CrossRefGoogle Scholar
  94. Olsen, A. G., J. T. Velardo, A. B. Hisaw, A. B. Dawson and L. E. Braverman: Prolongation of pseudopregnancy associated with the presence of deciduomata. Anat. Rec. 111, 44 (1951).Google Scholar
  95. Overholser, M. D., and W. O. Nelson: Migration of nuclei in uterine epithelium of monkey following prolonged estrin injections. Proc. Soc. exp. Biol. (N. Y.) 34 (1936).Google Scholar
  96. Peckham, B. M.: Die Erzeugung sekundärer Deciduomata bei der kastrierten und bei der stillenden Ratte. Endocrinology 41, 277 (1947).PubMedCrossRefGoogle Scholar
  97. Peckham, B. M., and R. R. Greene: Prolongation of pseudopregnancy by deciduomata in the rat. Proc. Soc. exp. Biol. (N. Y.) 69, 417 (1948).CrossRefGoogle Scholar
  98. Perloff, W. H., and R. Kurzrok: Production of uterine tumors in the guinea pig by local implantation of estrogen pellets. Proc. Soc. exp. Biol. (N. Y.) 46, 262 (1941).CrossRefGoogle Scholar
  99. Pfeiffer, C. A.: The effects of an experimentally induced endocrine imbalance in female mice., Anat. Rec. 75, 465 (1939).Google Scholar
  100. Pfeiffer, C. A.: Development of leiomyomas in female rats with an endocrine imbalance. Cancer Res. 9 277 (1949).PubMedGoogle Scholar
  101. Pfeiffer, C. A., and E. Allen: Attempts to produce cancer in Rhesus monkeys with carcinogenic hydrocarbons and estrogens. Cancer Res. 8, 97 (1948).PubMedGoogle Scholar
  102. Pierson, H.: Experimentelle Erzeugung von Uterusgeschwülsten bei Kaninchen durch Ovarialhormone. Z. Krebsforsch. 41, H. 2, 103 (1934).Google Scholar
  103. Pierson, H.: Experimentelle Erzeugung von Uterusgeschwülsten bei Kaninchen durch Prolan. Z. Krebsforsch. 45, 28 (1936); ref.: Zbl. allg. Path. path. Anat. 67, Nr. 11, 396 (1937).Google Scholar
  104. Pierson, H.: Weitere Follikulinversuche. Perforierende Plattenepithelwucherungen im Uterus des Kaninchens mit Knorpel-und Knochenbefunden. Z. Krebsforsch. 47, H. 1, 1 (1937); Zbl. allg. Path. path. Anat. 70, 66 (1938).Google Scholar
  105. Pierson, H.: Neue Follikulinversuche. Erzeugung von Neubildungen in-und außerhalb des Uterus von Kaninchen. Z. Krebsforsch. 46, H. 3, 109 (1937); Zbl. allg. Path. path. Anat. 69, 67 (1937).Google Scholar
  106. Pierson, H.: Experimentell erzeugtes infiltrierendes Adenom im Uterus des Kaninchens durch Hypophysenvorderlappenextrakt. Z. Krebsforsch. 47, H. 2, 166 (1938); Zbl. allg. Path. path. Anat. 70, 66 (1938).Google Scholar
  107. Pierson, H.: Metaplastisch entstandene Knochenbildungen neben infiltrierenden Epithelwucherungen im Uterus des Kaninchens durch Follikelhormon. Z. Krebsforsch. 47, H. 4, 336 (1938).Google Scholar
  108. Pierson, H.: The influence of various hormones on tumour development in the uterus of the rabbit. Acta Unio Int. Cancer 5, 152 (1940).Google Scholar
  109. Reiter, R. J.: Estrogen-induced uterine metaplasia in rats given oral supplements of vitamin A Experientia (Basel) 21, 207 (1965).Google Scholar
  110. Riesco, A.: On the bearing of time on the neoplastic action of small quantities of a-estradiol in the endometrium of guinea pigs. Brit. J. Cancer 1, 166 (1947); Bol. Soc. Biol. Santiago 4, 4 (1947).Google Scholar
  111. Sammartino, R., and R. G. Herrera: Los tumores producidos por estrógenos en cobayos. Rev. méd. latino-am. 25, 976 (1940).Google Scholar
  112. Selye, H., A. Borduas and G. Masson: Studies concerning the hormonal control of deciduomata and metrial glands. Anat. Rec. 82, 199 (1942).CrossRefGoogle Scholar
  113. Stone, G. M., and C. W. Emmens: The action of oestradiol and dimethylstilboestrol on early pregnancy and deciduoma formation in the mouse. J. Endocrin. 29, 137–145 (1964).CrossRefGoogle Scholar
  114. Stone, G. M., and C. W. Emmens: The effect of oestrogens and anti-oestrogens on deciduoma formation in the rat. J. Endocrin. 29, 147–157 (1964).CrossRefGoogle Scholar
  115. Suntzeff, V., E. L. Burns, M. Mosxor and L. LoEB: On the proliferative changes taking place in the epithelium of vagina and cervix of mice with advancing age and under the influence of experimentally administered estrogenic hormones. Amer. J. Cancer 32, 256 (1938).Google Scholar
  116. Tiiiery, M.: Het experimentele carcinoma colli uteri. Bruxelles: Presses académiques Européennes S. C. 1963.Google Scholar
  117. Vargas, L.: Fibrosis diseminada peritoneal inducida en el cobayo por estrégenos. Rev. chil. Hig. 4, 277 (1942).Google Scholar
  118. Vargas, L.: Attempt to induce formation of fibroids with estrogen in the castrated female rhesus monkey. Bull. Johns Hopk. Hosp. 73, 23 (1943).Google Scholar
  119. Vargas, L.: Experimental fibroids in hypophysectomized female guinea pigs. Cancer Res. 3, 309 (1943). Velardo, J. T., and F. L. Hisaw: Quantitative inhibition of progesterone by estrogens in development of deciduomata. Endocrinology 49, 530 (1951).Google Scholar
  120. Vargas, L., A. Dawson, A. Olsen and F. Hisaw: Sequence of histological changes in the uterus and vagina of the rat during prolongation of pseudopregnancy associated with the presence of deciduomata. Amer. J. Anat. 93, II, (1953).Google Scholar
  121. Vera, O: La acción antifibromatógena comparativa de los andrógenos. Tesis Univ. de Chile (1942); Publ. Dep. Med. Exp. No. 10.Google Scholar
  122. Wattenwyl, H. vox: Die Erzeugung von mesenchymalen Tumoren mit Follikelhormon. Rely. med. Acta 8, 187 (1941).Google Scholar
  123. Wattenwyl, H. vox: Follikelhormonapplikation und die hormonale Tumorentstehung (Tierversuche). Basel: Schwabe 1944.Google Scholar
  124. Woodruff, L. M.: Tumors produced by estradiol benzoate in the guinea pig. Cancer Res. 1, 367 (1941).Google Scholar
  125. Zaleski, W.: Experimentelle Endometriosis bei Kaninchenweibchen nach Prolaninjektionen. Zbl. Gynäk. 42, 2426 (1937).Google Scholar
  126. Zitzlsperger, S.: Geschwulstbildungen in der Uterusschleimhaut beim sterilisierten Kaninchen. Z. mikr -anat. Forsch. 49, H. 2, 273 (1941).Google Scholar
  127. Zondek, B.: The effect of prolonged application of large doses of follicular hormone on the uterus of rabbits. J. exp. Med. 63, 789 (1936).PubMedCrossRefGoogle Scholar
  128. Zondek, B.: The effect of long-continued large doses of follicle hormone upon the uterus of the rat. Amer. J. Obstet. Gynec. 33, 979 (1937).Google Scholar
  129. Zuckerman, S.: The histogenesis of tissues sensitive to oestrogens. Biol. Rev. 15, 231 (1940).CrossRefGoogle Scholar

h) Hoden

  1. Bacon, R. L.: Tumors of the epididymis in hamsters treated with diethylstilbestrol and testosteron propionate. Anat. Rec. 112, 305 (1952).Google Scholar
  2. Bern, H. A.: Some effects of long-continued estrogen treatment on male dutch rabbits. Cancer Res. 9, 65 (1949).PubMedGoogle Scholar
  3. Bielschowsky, E., and W. H. Hall: Experimentally induced hyper-and neo-plastic changes in the testis of rats. Proc. Univ. Otago med. Sch. 32, 16 (1954). See also: A. R. Brit. Emp. Cancer Campgn. 32, 352 (1954).Google Scholar
  4. Biskind, G. R., and J. Mark: The inactivation of testosterone propionate and extrone in rats. Bull. Johns Hopk. Hosp. 65, 212 (1939).Google Scholar
  5. Biskind, M. S., and G. R. Biskind: Inactivation of testosterone propionate in the liver during vitamin B complex deficiency. Alteration of the estrogen-androgen equilibrium. Endocrinology 32, 97 (1943).CrossRefGoogle Scholar
  6. Biskind, M. S., and G. R. Biskind: Tumor of rat testis produced by heterotransplantation of infantile testis to spleen of adult castrate. Proc. Soc. exp. Biol. (N. Y.) 59, 4–8 (1945).CrossRefGoogle Scholar
  7. Bonser, G. M.: Malignant tumors of the interstitial cells of the testis in strong A mice treated with triphenylethylene. J. Path. Bact. 54, 149 (1942).CrossRefGoogle Scholar
  8. Bonser, G. M.: Mammary and testicular tumours in male mice of various strains following oestrogen treatment. J. Path. Bact. 56, 15 (1944).CrossRefGoogle Scholar
  9. Bonser, G. M., and J. M. RossoN: The effects of prolonged oestrogen administration upon male mice of various strains: development of testicular tumors in the strong of a strain. J. Path. Bact. 51, 9–22 (1940).CrossRefGoogle Scholar
  10. Burrows, H.: Changes induced in the interstitial tissue of the testis of the mouse by certain oestrogens. J. Path. Bact. 41, 218 (1935).Google Scholar
  11. Burrows, H.: A comparison of the changes induced by some pure oestrogenic compounds in the mammae and testes of mice. J. Path. Bact. 42, 161 (1936).CrossRefGoogle Scholar
  12. Burrows, H.: Biological actions of sex hormones. Sec. ed. Cambridge: Univ. Press (1949).Google Scholar
  13. Burrows, H., and E. Horning: Oestrogen and neoplasia. Oxford: Blackwell 1952.Google Scholar
  14. Dominguez, O. V., L. T. Samuels and R. A. Huseby: Steroid biosynthesis in induced testicular interstitial cell tumors of mice. In: G. E. W. Wolstenholme and M. O’Connor (eds.),Ciba Found Coll. Endocr. 12, 231–38 (1958).Google Scholar
  15. Dontenwill, W.: Vergleichende Untersuchungen an in die Milz implantierten endokrinen Drüsen. Verh. dutch. Ges. Path. 43, 243 (1959).Google Scholar
  16. Dontenwill, W., u. H. Ranz: Vergleichende Untersuchungen an Transplantaten endokriner Drüsen. Im Beitr. Path. Anat. 124, 229–241 (1961).Google Scholar
  17. Ely, C. A.: Effect of antigonadotrophic serum on testes of A-strain mice treated with estrogen. Proc. Soc. exp. Biol. (N. Y.) 84, 501–505 (1953).CrossRefGoogle Scholar
  18. Gardner, W. U.: Hypertrophy of interstitial cells in the testes of mice receiving estrogenic hormones. Anat. Rec. 68, 339 (1937).CrossRefGoogle Scholar
  19. Gardner, W. U.: Interstitielle Tumoren nach langdauernder Behandlung mit Triphenylethylen. Cancer Res. 1, 345 (1941).Google Scholar
  20. Gardner, W. U.: Testicular tumors in mice of several strains receiving triphenylethylene. Cancer Res. 3, 92 (1943).Google Scholar
  21. Gardner, W. U.: Zwischenzelltumoren bei Bastardmäusen, die mit Tri-p-anisyl-chloräthylen behandelt wurden. Arch. Path. (Chicago) 50, 750 (1950).Google Scholar
  22. Gardner, W. U.: Testicular tumorigenesis. In: G. E. W. Wolstenholme and M. O’Connor (eds.), Ciba Found. Coll. Endocr. 12, 239–249 (1958).Google Scholar
  23. Gardner, W. U.: Genetic aspects of hormonal influences on cancer. Ann N Y Acad. Sci. 71, 1092–1099 (1958).PubMedCrossRefGoogle Scholar
  24. Gardner, W. U., and J. Boddaert: Testicular interstitial cell tumors in hybrid mice given tri-p-anisylchloraethylene. Arch. Path. (Chicago) 50, 750 (1950).Google Scholar
  25. Gardner, W. U., C. A. Pfeiffer, J. J. Trentin and J. T. Wolstenholme z Hormonal factors in experimental carcinogenesis. Physiopathology of Cancer. New York: Hoeber-Harper 1953.Google Scholar
  26. Geschickter, C. F., and E. W. Byrnes: Factors influencing the development and time of appearance of mammary cancer in the rat in response to estrogen. Arch. Path. (Chicago) 33, 334 (1942).Google Scholar
  27. Hooker, C. W., W. U. Gardner and C. A. Pfeiffer: Testicular tumors in mice receiving estrogens. J. Amer. med. Ass. 115, 443 (1940).CrossRefGoogle Scholar
  28. Hooker, C. W., and A. Pfeiffer: The morphology and development of testicular tumors in mice of a strain receiving estrogens. Cancer Res. 2, 759 (1942).Google Scholar
  29. Huseby, R. A.: Interstitial cell tumors of the mouse testis: studies of tumorigenesis, dependency and hormone production. In: G. E. W. Wolstenholme and M. O’CoNNoR (eds.). Ciba Found. Coll. Endocr. 12, 216–230 (1958).Google Scholar
  30. Jedlicky, A., A. Lipschutz et L. Vargas: La spécificité sexuelle de la réaction tumorale conjonctive vis-à-vis de l’hormone folliculaire. (17-caprylate et 17-benzoate-3-n-butyrate d’oestradiol). C. R. Soc. Biol. (Paris) 130, 1466 (1939).Google Scholar
  31. Jones, A.: Experimental production of interstitial cell tumors. Brit. J. Cancer 9, 640–645 (1955).PubMedCrossRefGoogle Scholar
  32. Kirkman, H.: Steroid hormon and tumorigenesis. Cancer (Philad.) 10, 754 (1957).CrossRefGoogle Scholar
  33. Klein, G., u. K. E. HellstrÖM: Transplantationsstudien an Oestrogen-induzierten Leydig Zelltumoren der Maus. J. nat. Cancer Inst. 28, 99–115 (1962).PubMedGoogle Scholar
  34. Koref, O., A. Lipschutz et L. Vargas: Spécificité sexuelle et tumorigenèse. C. R. Soc. Biol, (Paris) 130, 303 (1939).Google Scholar
  35. Lacassagne, A.: Modifications de l’épithélium vésical chez la souris atteinte de rétention urinaire à la suite d’injections d’oestrone. C. R. Soc. Biol. (Paris) 120, 833 (1935).Google Scholar
  36. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann 1950.Google Scholar
  37. Lacassagne, A., et A. Raynaud: Injection de testostérone dans la vésicule séminale du rat castré, pour accroître la sensibilité de ce test biologique de l’hormone male. C. R. Soc. Biol. (Paris) 126, 576 (1937).Google Scholar
  38. Lacassagne, A., et A. Raynaud: Influence de l’hormone mâle et de l’hormone femelle sur la structure histologique du pénis de la souris. C. R. Soc. Biol. (Paris) 126, 868 (1937).Google Scholar
  39. Li, M. H., C. A. Pfeiffer and W. U. Gardner: Intrasplenic transplantation of testes in castrated mice. Proc. Soc. exp. Biol. (N. Y.) 64, 319 (1947).CrossRefGoogle Scholar
  40. Lipschutz, A.: On the hypertrophy of the interstitial cells in the testicle of the guinea pig under different experimental conditions. Proc. roy. Soc. B 93, 132; 94, 83 (1922).Google Scholar
  41. Lipschutz, A.: Internal secretions of the sex glands. Cambridge: Helfer and Sons, Ltd. Baltimore: Williams and Wilkins Comp. 1924.Google Scholar
  42. Lipschutz, A.: Steroid hormones and tumors. Baltimore: Williams and Wilkins Comp. 1950.Google Scholar
  43. Lipschutz, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: Heifer and Sons, Ltd. 1957. Martins, TH.: Glandulas sexuaes e hypophyse anterior. Sao Paulo: Cia. Editora National 1936.Google Scholar
  44. Pfeiffer, C. A., and C. W. Hooker: Testicular changes resembling early stages in the develop-ment of interstitial cell tumors in mice of the A strain after long continued injections of pregnant mare serum. Cancer Res. 3, 762–766 (1943).Google Scholar
  45. Samsonoff, N.: Sur la production expérimentale du tumeurs de la glande interstitielle du testicule chez le rat. C. R. Soc. Biol. (Paris) 135, 922 (1941).Google Scholar
  46. Shimkin, M. B., H. G. Grady and H. B. Andervont: Induction of testicular tumors and other effects of stilbestrol-cholesterol pellets in strain C mice. J. nat. Cancer Inst. 2, 65–80 (1941).Google Scholar
  47. Simpson, M. E., and G. Van Wagenen: Persistent nodules in testis of the monkey associated with Leydig cell hyperplasia induced by gonadotrophins. Cancer Res. 14, 289–293 (1954).PubMedGoogle Scholar
  48. Trentin, J., and W. U. Gardner: Site of gene action in susceptibility to estrogen-induced testicular interstitial-cell tumors of mice. Cancer Res. 18, 1, 110 (1958).Google Scholar
  49. Twombly, G. H., D. Meisel and A. P. Stout: Leydig-cell tumors induced experimentally in the rat. Cancer (Philad.) 2, 884 (1949).CrossRefGoogle Scholar
  50. Weill, CL.: Notions nouvelles sur la cryptorchidie expérimentale. Effect de la cryptorchidie unilatérale, chez le cobaye, sur le testicule ectopique et sur l’autre testicule. C. R. Soc. Biol. (Paris) 149, 183 (1955).Google Scholar

i) Prostata

  1. Acuna, J.: El fibromioepitelioma periutricular inducido per estrógenos y su prevención por el acetato de desoxicorticosterona. Tesis Univ. de Chile (1944) (Public. Dep. Med. Exp. No. 28 ).Google Scholar
  2. Bern, H. A.: Some effects of long continued estrogen treatment on male dutch rabbits. Cancer Res. 9, 65 (1949).PubMedGoogle Scholar
  3. Hler, F.: Þber den Einfluß verschiedener Hormone auf die Prostata der Ratte. Beitrag zur Frage der innersekretorischen Ätiologie der menschlichen Prostatahypertrophie. Z. ges. exp. Med. 104, 249 (1938); Zbl. allg. Path. path. Anat. 72, 326 (1939).Google Scholar
  4. Bulliard, H.. u. A. Ravina: Wirkung des männlichen Sexualhormons auf die Präputialdrüse. C. R. Soc. Biol. (Paris) 125, 965 (1937); Zbl. allg. Path. path. Anat. 70, 115 (1938).Google Scholar
  5. Burrows, H.: Biological actions of sex hormones. Sec. ed. Cambridge (Engl.): Univ. Press 1949.Google Scholar
  6. Burrows, H., and N. Kenneway: Amer. J. Cancer 70, 48 (1934).CrossRefGoogle Scholar
  7. Calef, C.: Experimentelle Untersuchungen über die Veränderungen einiger endokriner Drüsen, die mit einer Prostatahyper-oder Hypofunktion zusammenhängen. Scritti Med. in onore del Prof. M. Donati del 25. anno di insegnamento. Vol. 50. Zbl. allg. Path. path. Anat. 72, 326 (1939).Google Scholar
  8. Chamiy, CH., u. R. Coujard: Die Wirkung der Sexualhormone auf die Vorsteherdrüse.C. R. Soc. Biol. (Paris) 125, 632 (1937); Zbl. allg. Path. path. Anat. 70, 115 (1938).Google Scholar
  9. Chevrel-Boden, M. L., et D. Leroy: Étude histologique de l’appareil génital male du lapin soumis à la folliculinization prolongée. Ann. Endocr. (Paris) 2, 226 (1941).Google Scholar
  10. Courrier, R., et G. Cohen-Solal: L’utricule prostatique chez le cobaye soumis à la folliculinication. C. R. Soc. Biol. (Paris) 121, 903 (1936).Google Scholar
  11. Courrier, R., et G. Gros: tude des rapports fonctionnels entre les hormones ovariennes chez les primates. C. R. Soc. Biol. (Paris) 125, 746 (1937).Google Scholar
  12. Deanesly, R.: The uterus masculinus of the rabbit and its reactions to androgens and oestrogens. J. Endocr. 1, 300 (1939).CrossRefGoogle Scholar
  13. Horning, E. S.: Þber die Wirkung von Kastration und Behandlung mit Stilboestrol auf Prostatatumoren der Mäuse. Brit. J. Cancer 3, 211 (1949).PubMedCrossRefGoogle Scholar
  14. Horning, E. S., and J. W. Whitticr: The histogenesis of stilboestrol-induced renal tumours in the male golden hamster. Brit. J. Cancer 8, 451 (1954).PubMedCrossRefGoogle Scholar
  15. Jongh, S. E., DE, D. J. Kok and L. A. Van-Der-Woerd: Paradoxe Wirkungen des Follikelhormons bei männlichen Tieren. II. Die Beeinflußbarkeit durch gonadotropes Hormon. Die Beziehungen zur Prostatahypertrophie. Arch. int. Pharmacodyn. 58, 310 (1938).Google Scholar
  16. Jongh, S. E., A. Querido and L. A. M. Stolte: Paradoxical effects of oestrone in male animals. IV. The inhibition of the paradoxical effect by progesterone. Arch. in Pharmacodyn. 62, 390 (1939).Google Scholar
  17. Koch, W.: Zur Ätiologie der Prostatahypertrophie. Munch. med. Wschr. 1936, Nr. 37; Zbl. allg. Path. path. Anat. 67, 57 (1937).Google Scholar
  18. Korencievsky, V., and M. Dennison: Histological changes in the organs of rats injected with oestrone alone or simultaneously with oestrone and testicular hormone. J. Path. Bact. 41, 323 (1935).CrossRefGoogle Scholar
  19. Lacassagne, A.: Metaplasie epidermoide de la prostata provoquée, chez la souris, par des injections. Répétées de fertes doses de folliculine. C. R. Soc. Biol. (Paris) 113, 590 (1933).Google Scholar
  20. Lacassagne, A.: Les cancers produits par des substances chimiques endogénes. Paris: Hermann 1950.Google Scholar
  21. Lacassagne, A., et E. Villela: Processus histologique de la métaplasie epidermoïde des lobes prostatiques postérieurs, chez la souris male folliculinée. C. R. Soc. Biol. (Paris) 114, 870 (1933).Google Scholar
  22. Lermanda, V.: El fibromioepitelioma periutricular experimental en presencia del testiculo. esis Univ. de Chile 1945 (Public. Dep. Med. Exp. No. 44 ).Google Scholar
  23. Lipschutz, A.: Steroid hormones and tumors. Baltimore: Williams and Wilkins Comp. 1950:Google Scholar
  24. Lipschutz, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: Heifer and Sons, Ltd. 1957Google Scholar
  25. Lipschutz, A.,. Yanine, J. Schwarz, S. Bruzzgne, J. Acuna and S. Silberman: Induction and pre-vention of fibromyoepithe]ioma of the utricular bed in male guinea pigs. Cancer Res. 5, 515 (1945).Google Scholar
  26. Parkes, A. S., and S. Zuckerman: Experimental hypoplasie of the prostata. Lancet 228, 925 (1935); Lacassagne: C. R. Soc. Biol. (Paris) 113, 590 (1933).Google Scholar
  27. Richter, W. H.: Morphologisch-experimentelle Untersuchungen zum Problem der Prostata-hypertrophie. II. Morphologisch-exper. Teil. Z. Urol. 43, 185 (1950); 110 (1951).Google Scholar
  28. Ssle, R., u. H. Zahler: Experimentelle Untersuchungen über Hoden und Prostataveränderungen durch Zufuhr von Hodenwirkstoffen. Virchows Arch. path. Anat. 302, H. 2 /3 (1938).Google Scholar
  29. Zuckerman, S., and A. S. Parkes: Effect of sex hormones on the prostate of monkeys. Lancet 1936, I, 242.CrossRefGoogle Scholar
  30. Zuckerman, S., and A. S. Parkes: Inhibitory effect of testosterone propionate on experimental prostatic enlargement. Lancet 1936, II, 1259.CrossRefGoogle Scholar

k) Verschiedenes

  1. Gradially, F. N., and H. J. Whiteley: Hormonally induced epithelial hyperplasia in the Goldfish (Carrasius auratus). Brit. J. Cancer 6, 246 (1952).CrossRefGoogle Scholar
  2. Querher, H.: Zellwucherungen nach Applikation eines androgenen Wirkstoffes. Naturwissenschaften 1953, 466.Google Scholar
  3. Wrba, H., u. H. Querher: Auslösung spezifischer Wachstumsvorgänge bei Zahnkarpfen durch androgenes Steroidhormon. Z. Naturforsch. 11., 5 (1956).Google Scholar
  4. l) Tumoren beim Goldhamster etc.Google Scholar
  5. Algard, F. T.: Hormonal induzierte Tumoren. I. Geschwülste des Flank-Organs und der Niere des Hamsters in vivo. J. nat. Cancer Inst. 25, 557–571 (1960).Google Scholar
  6. Algard, F. T.: Characteristics of an androgen/estrogen-induced dependent leiomyosarcoma of the ductus deferens of the syrian hamster. II. In vitro. Cancer Res. 25, 147–151 (1965).Google Scholar
  7. Algard, F. T., A. H. Dodge, and H. Kirkman: Development of the flank organ (scent gland) of the syrian hamster. I. Embryology. Amer. J. Anat. 114, 435–455 (1964).CrossRefGoogle Scholar
  8. Bielscaowsky, F., and E. S. Horning: Aspects of endocrine carcinogenesis. Brit. med. Bull. 14, 106 (1958).Google Scholar
  9. Bosch, L. A.: Estudios experimentales sobre oncogénesis: La action del tetracloruro de carbono y estradiol en el desarrollo de los tumores renales malignos del hamster dorado. Archivo espanol de morfologia, tesis doctoral, Valencia 1964.Google Scholar
  10. Büngeler, W., u. W. Dontenwill: Hormonell ausgelöste geschwulstartige Hyperplasien, hyperplasiogene Geschwülste und ihre Verhaltensweisen. Dtsch. med. Wschr. 1959, 1885.Google Scholar
  11. Dontenwill, W.: Experimentelle Erzeugung von Nieren-und Lebertumoren durch Follikel-hormon. Verh. dtsch. Ges. Path. 42, 457 (1958).Google Scholar
  12. Dontenwill, W.: Die endokrinen Regulationen hyperplastischer und maligner Gewebsproliferationen. Verh. dtsch. Ges. Path. 45. Tag. Münster 74 (1961).Google Scholar
  13. Dontenwill, W.: Die Bedeutung der Hormone für die Geschwulstentstehung. Zbl. Gynäk. 83, 1704 (1961).Google Scholar
  14. Dontenwill, W., u. M. Eder: Neue Befunde über Geschwulstbildungen nach Follikelhormonbehandlung beim Goldhamster. Naturwissenschaften 1957,. 591.Google Scholar
  15. Dontenwill, W.: Histogenese und biologische Verhaltensweise hormonell ausgelöster Geschwülste. Beitr. path. Anat. 120, 270 (1959).Google Scholar
  16. Dontenwill, W., u. W. Mohr: Cystische Leberdystrophie beim Goldhamster im Experiment. Klin. Wschr. 1961, 593.Google Scholar
  17. Dontenwill, W., u. W. Mohr: Proliferationsfördernde und hemmende Wirkung der Geschlechtshormone bei Behandlung von Goldhamstern mit Carcinogenen. Z. Krebsforsch. 64, 381 (1961).PubMedCrossRefGoogle Scholar
  18. Dontenwill, W., u. W. Mohr: Die unterschiedliche lungencarcinogene Wirkung des Diäthylnitrosamin bei Hamster und Ratte. Z. Krebsforsch. 64, 499 (1962).PubMedCrossRefGoogle Scholar
  19. Dontenwill, W., u. W. Mohr: Experimentelle Erzeugung metastasierender Strumen nach Behandlung von Gold- hamstern mit Tabakrauchkondensaten. Z. Krebsforsch. 65, 69 (1962).PubMedCrossRefGoogle Scholar
  20. Dontenwill, W.,,u. H. Ranz: Untersuchungen über die hormonale Abhängigkeit des durch Follikelhormon erzeugten Nierentumors des Goldhamsters bei der Transplantation. Klin. Wschr. 1960, 828.Google Scholar
  21. Dontenwill, W.,,u. H. Ranz: Experimentelle Untersuchungen zur Genese von Nierengeschwülsten beim Goldhamster. Beitr. path. Anat. 122, 381 (1960).Google Scholar
  22. Dontenwill, W., u. H. Wrba: Das Wachstum des durch Oestrogene erzeugten Nierentumors beim Goldhamster in der Gewebekultur. Beitr. path. Anat. 121, 301 (1959).Google Scholar
  23. Dontenwill, W., u. H. Wrba: Die spezifische Wirkung von Oestrogensulfat auf Gewebekulturen eines hormoninduzierten Nierentumors beim Goldhamster. Klin. Wschr. 1959, 727.Google Scholar
  24. Fortner, J. G., P. A. George, and S. S. Sternberg: Induced and spontaneous thyroid cancer in the Syrian (golden) hamster. Endocrinology 66, 364 (1960).CrossRefGoogle Scholar
  25. Furtii, J., E. L. Gadsden and A. C. Upton: Hyperplasia and cystic dilation of extrahepatic biliary tracts in mice bearing grafted pituitary growths. Cancer. Res. 12, 739–743 (1952).Google Scholar
  26. Horning, E. S.: The influence of unilateral nephrectomy on the development of stilboestrol-induced renal tumours in the male hamster. Brit. J. Cancer 8, 627 (1954).PubMedCrossRefGoogle Scholar
  27. Horning, E. S.: Endocrine factors involved in the induction, prevention and transplantation of kidney tumours in the male golden hamster. Z. Krebsforsch. 61, 1 (1956).PubMedCrossRefGoogle Scholar
  28. Horning, E. S.: Observations on hormone-dependent renal tumours in the golden hamster. Brit. J. Cancer 10, 678 (1956).PubMedCrossRefGoogle Scholar
  29. Horning, E. S.: Induction of pituitary tumors and melanomas in the golden hamster. In: G. E. W. Wolstenholme and M. O’Connor (eds.); Ciba Found. Coll. Endocr. 12, 22–29 ( 1958 ); London: J. and A. Churchill, Ltd. 1958.Google Scholar
  30. Horning, E. S., and J. W. Whittiok: The histogenesis of stilboestrol-induced renal tumours in the male golden hamster. Brit. J. Cancer 8, 451 (1954).PubMedCrossRefGoogle Scholar
  31. Ising, U.: The effect of unilateral ureterectomy on the development of estrogen-induced renal tumours in male hamsters. Acta path. microbiol. stand. 39, 188 (1956).Google Scholar
  32. Kirkman, H.: Steroid tumorigenesis. Cancer (Philad.) 10, 754 (1957).CrossRefGoogle Scholar
  33. Kirkman, H.: Estrogen-induced tumors of the kidney in the syrian hamster National Cancer Institute Monograph. Nr. 1/1959.Google Scholar
  34. Kirkman, H., and F. Tx. Algard: Androgen-Estrogen-induced tumors. I. The flank organ(scent gland) chaetepithelioma of the syrian hamster. Cancer Res. 24, 1569–1593 (1964).PubMedGoogle Scholar
  35. Kirkman, H., and F. Tx. Algard: Characteristics of an androgen/estrogen-induced dependent leiomyosarcoma of the ductus deferens of the syrian hamster. I. In vivo. Cancer Res. 25, 141–145 (1965).Google Scholar
  36. Kirkman, H., and F. Tx. Algard: Malignant renal tumors in male hamsters (cricetus auratus) treated with estrogen. Cancer Res. 10, 122 (1950).PubMedGoogle Scholar
  37. Kirkman, H., and R. L. Bacon: Estrogen-induced tumors of the kidney. I. Incidence of renal tumors of intact and gonadectomized male golden hamsters treated with diethylstilbestrol. J. nat. Cancer Inst. 13, 745–755 (1952).Google Scholar
  38. Kirkman, H., and R. L. Bacon: Estrogen-induced tumors of the kidney. II. Effect of dose, administration, type of estrogen, and age on the induction of renal tumors in intact male golden hamsters. J. nat. Cancer Inst. 13, 757 (1952).PubMedGoogle Scholar
  39. Rivière, M. R., I. Chouroulinkov et M. Guérin: Actions hormonales experimentales de longue durée chez le hamster du poit de vue de leur effet cancerigene. Bull. Cancer (Franc.) 48, 499 (1961); 47, 557 (1960).Google Scholar
  40. RiviÈRE, M. R., I. Chouroulinkov et M. GUÉRin: Actions hormonales expérimentales de longue durée chez le hamster du point de vue de leur effet cancérigène. I. Etude de la Testostérone. Extrait Bull. Cancer 47, 557–564 (1960).Google Scholar
  41. Rivière, M. R., I. Chouroulinkov et M. GUéRin: Actions hormonales experimentales de longue durée chez le hamster du point de vue de leur effet cancérigène. II. Etude de la testostérone associée à un oestrogène. Extrait Bull. Cancer 48, 499–525 (1961).Google Scholar
  42. Scxümmelfeder, N., u. J. Gimmy: Zur Ätiologie und Pathogenese des Krebses. Miinchn. Med. Wschr. 106, 1–11 (1964).Google Scholar
  43. Vasquez-Lopez, E.: The relation of the pituitary gland and related hypothalamic centres, in the hamster to prolonged treatment with oestrogens. J. Path. Bact. 56, 1 (1944).CrossRefGoogle Scholar
  44. Ward, D. N., J. D. Putch, R. F. Mcgregor, and J. P. Chang: Estrogen-induced kidney tumors in the golden hamster. II. Diethylstilbestrol absorption and distribution in tissues. Cancer Res. 24, 319–326 (1964).PubMedGoogle Scholar
  45. Dannenberg, H.: Þber die endogene Krebsentstehung. Dtsch. med. Wschr. 83, 1726–1732 (1958).CrossRefGoogle Scholar
  46. Dannenberg, H.: Þber Beziehungen zwischen Steroiden und krebserzeugenden Verbindungen. Z. Krebsforsch. 65, 396–403 (1963).PubMedCrossRefGoogle Scholar
  47. Furth, J.: Conditioned and autonomous neoplasms: a review. Cancer Res. 13, 477 (1953).PubMedGoogle Scholar
  48. Gardner, W.: Hormones and carcinogenesis. Canad. Cancer Conf. 2, 207 (1957).PubMedGoogle Scholar
  49. Haddow, A., R. J. Harris, G. A. R. Kox, and E. M. F. Roe: Phil. Trans. B 241, 147 (1948). Kirschbaum, A.: The role of hormones in cancer: laboratory animals. Cancer Res. 17, 432 (1957).Google Scholar
  50. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann 1950.Google Scholar
  51. Lipschutz, A.: Steroid hormones and tumours. Baltimore: Williams and Wilkins Comp. 1950Google Scholar
  52. Maeyer-Guignard, J. DE, and E. DE Maeyer: Effect of carcinogenic and noncarcinogenic hydrocarbons on interferon synthesis and virus plaque development. J. nat. Cancer Inst. 34, 265–276 (1965).Google Scholar
  53. Smart, K., and E. Kilbourne: The influence of cortisone on experimental viral infection. J. exp. Med. 123, 299 (1966).PubMedCrossRefGoogle Scholar

(Uterus)

  1. Dontenwill, W., U. Mohr U. J. Bernhard: Die unterschiedliche Wirkung des Follikelhormons auf die Portio-und Vaginalschleimhaut bei parenteraler und lokaler Applikation. Z. Krebsforsch. 65, 303–308 (1963).PubMedCrossRefGoogle Scholar
  2. Dunn, TR. B., and A. W. Green: Cysts of the epididymis, cancer of the cervix granular cell myoblastoma and other lesions after estrogen injection in newborn mice. J. nat. Cancer Inst. 31, 425–455 (1963).PubMedGoogle Scholar
  3. Fischer, W., U. I. KüHL: Geschwülste der Laboratoriumsnagetiere. Dresden, Leipzig: Theodor Steinkopff 1958.Google Scholar
  4. Gardner, W. U.: studies on steroid hormones in experimental carcinogenesis. Recent Progr. Hormone Res. (Proc. Laurentian Horm. Confer.) 1, 217 (1947).Google Scholar
  5. Gardner, W. U.: Hormonal aspects of experimental tumorigenesis. Advanc. Cancer Res. 1, 173 (1953).CrossRefGoogle Scholar
  6. Gardner, W. U.: Carcinoma of the uterine cervix and upper vagina: Induction under experimental conditions in mice. Ann. N. Y. Acad. of Sci. 75, 543 (1959).CrossRefGoogle Scholar
  7. Gardner, W. U.: Experimental induction of uterine cervical and vaginal cancer in mice. Cancer Res. 19, II, 170 (1959).Google Scholar
  8. Gardner, W. U.: Role of steroids in cervical cancer. Proceedings of the second National Cancer Conference. American Cancer Society, Inc., National Cancer Institute of the U. S. Public Health Service, American Association for Cancer Research 1959.Google Scholar
  9. Gardner, W. U., E. Allen, G. M. Smith and L. C. Strong: Carcinoma of the cervix of mice receiving estrogens. J. Amer. med. Ass. 110, 1182 (1938).CrossRefGoogle Scholar
  10. Gardner, W. U., and M. Ferrigno: Unusual neoplastic lesions of the uterine horns of estrogen-treated mice. J. nat. Cancer Inst. 17, 601 (1956).PubMedGoogle Scholar
  11. Gardner, W. U., and S. C. Pan: Malignant tumors of the uterus and vagina in untreated mice of the PM Stock. Cancer Res. 8, 241–256 (1948).PubMedGoogle Scholar
  12. Gardner, W. U., C. A. Pfeiffer, J.J. Trentin, and J. T. Wolstenholme: Hormonal factors in experimental carcinogenesis. The Physiopathology of Cancer 225. New York: Paul B. Hoeber, Inc. 1953.Google Scholar
  13. Lacassagne, A.: Tumeurs maligne apparues au cours d’un traitement hormonal combiné chez des souris appartenant à des lignées refractaires au cancer spontane. C. R. Soc. Biol. (Paris) 121, 607 (1936).Google Scholar
  14. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann 1950.Google Scholar
  15. Lipschutz, A.: Steroid hormones and tumors. Baltimore: Williams and Wilkins Comp. 1950.Google Scholar
  16. Lacassagne, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: Heller and Sons, Ltd. 1957.Google Scholar
  17. Loeb, L., E. L. Burns, V. Suntzeff and M. Moskop: Carcinoma-like proliferations in vaginal cervix and uterus of mouse treated with estrogenic hormones. Proc. Soc. exp. Biol. (N. Y.) 35, 320 (1936).CrossRefGoogle Scholar
  18. Nie, R. Van, E. L. Benedetti, and O. MÞHlbock: A carcinogenic action of testosterone provoking uterine tumours in mice. Nature (Lond.) 192, 1303–1305 (1961).Google Scholar
  19. Pan, S. C., and W. U. Gardner: Carcinomas of uterine cervix and vagina and estrogen-and-androgen treated hybrid mice. Cancer Res. 8, 337 (1948).PubMedGoogle Scholar
  20. Pfeiffer, C. A.: Adenocarcinoma in the uterus of an endocrine imbalance female rat. Cancer Res. 9, 347 (1949).PubMedGoogle Scholar
  21. Shabad, L. M.: Trends in Cancer Research in Ussr. Amer. Rev. Soviet Med. 4, 166 (1946).Google Scholar
  22. Shabad, L. M.: Adeno-ca des corpus uteri nach hohen Dosen Oestrogen (5–51/2 Mo.) bei der kastrierten Ratte. Sowjetwiss. 1949, H. 4.Google Scholar

(Verschiedenes)

  1. Bielschowsky, F., and E. S. Horning: Aspects of endocrine carcinogenesis. Brit. med. Bull. 14, 106 (1958).Google Scholar
  2. Bischoff, F., and D. Rum,: Cancer Res. 6, 403 (1946).PubMedGoogle Scholar
  3. Burns, E. L., V. Suntzeff and L. Loeb: The development of sarcoma in mice injected with hormones or hormone-like substance. Amer. J. Cancer 32, 534–544 (1938).CrossRefGoogle Scholar
  4. Burrows, H.: Sarkome nach Testosteroninjektion. Biological action of sex hormones, S. 194.London: Cambridge University Press 1945.Google Scholar
  5. Burrows, H., and E. S. Horning: Oestrogens and neoplasia. Brit. med. Bull. 4, 390 (1947). CooK, J., and E. L. Kennaway: Chemical compounds as carcinogenic agents. Amer. J. Cancer 39, 381 (1940); 39, 521 (1940).Google Scholar
  6. Dontenwill, W., U. M. Eder: Histogenese und biologische Verhaltensweise hormonell ausgelöster Geschwülste. Beitr. path. Anat. 120, 270 (1959).Google Scholar
  7. Dunning, W. F., M. R. Curtis and A. Segaloff: Strain differences in response to diethylstilbestrol and the induction of mammary gland and bladder cancer in the rat. Cancer Res. 7, 511–521 (1947).Google Scholar
  8. Dunning, W. F., M. R. Curtis and A. Segaloff: Strain differences in response to estrone and the induction of mammary gland, adrenal and bladder cancer in rats. Cancer Res. 13, 147–152 (1953).PubMedGoogle Scholar
  9. Gardner, W. U., G. M. Smith, L. C. Strong and E. Allen: Development of sarcoma in male mice receiving estrogenic hormones. Arch. Path. (Chicago) 21, 504 (1936).Google Scholar
  10. Gilman, J., C. Gilbert and I. Spence: Primary cancer of the liver in rats after subcutaneous implantation of pellets of progesterone and testosterone propionate. Experientia (Basel) 13, 4, 160 (1957).CrossRefGoogle Scholar
  11. Homburger, F., P. Borges and A. Tregier: Uterussarkome bei Mäusen (Swiss and Balb) nach Testosteronbehandlung. Proc. Amer. Cancer Res. 2, 215 (1957).Google Scholar
  12. Horning, E. S.: Carcinogenic action of androgens. Brit. J. Cancer 12, 414 (1958). Kjrkman, H.: Steroid tumorigenesis. Cancer (Chic.) 10, 754 (1957).Google Scholar
  13. Lacassagne, A.: Sarcomes fusocellulaires apparus chez des souris longuement traitées par des hormones oestrogènes. C. R. Soc. Biol. (Paris) 126, 190 (1937).Google Scholar
  14. Lacassagne, A.: Statistique des différents cancers constatés dans des lingnées selectionnées des souris, apres action prolongée d’hormones oestrogènes. Bull. Cancer 27, 96 (1938).Google Scholar
  15. Lacassagne, A.: Les rapports entre les hormones sexuelles et la formation du cancer. Ergebn. Vit. Horm.Forsch. 2, 258 (1939).Google Scholar
  16. Lacassagne, A.: 37% der mit Testosteron behandelten Mäuse bekamen subcutane Sarkome. Bull. A. s. franç. Cancer 28, 951 (1939); C. R. Soc. Biol. (Paris) 132, 365 (1939).Google Scholar
  17. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann 1950.Google Scholar
  18. Loeb, L., E. L. Burns, V. Suntzeff and M. MosxoP: Sex hormones and their relation to tumor production. Amer. J. Cancer 30, 47 (1937).CrossRefGoogle Scholar
  19. Mirand, E. A., M. C. Reinhard and H. L. Goltz: Development of sarcoma in marsh-albino mice following injection of desoxycorticosterone acetate in sesame oil. Proc. Soc. exp. Biol. (N. Y.) 83, 14–17 (1953).CrossRefGoogle Scholar
  20. Mosinger, M.: Le problème du cancer et son évolution récente. Paris: Masson et Cie. 1946.Google Scholar
  21. Mosinger, M.: Þber die Beziehungen zwischen den oestrogenen cancero-und anticancerogenen sklerogenen kolloido-cytogenen und karyoklastischen Effekten. C. R. Soc. Biol. (Paris) 141, 298 (1947).Google Scholar
  22. Mosinger, M.: Proliferative Prozesse bei den Nagern, ausgelöst durch synthetische Krebserzeuger und hormonale, namentlich oestrogene Substanzen. Bull. Ass. franç. Cancer 42, 4 (1951); Arch. Geschwulstforsch. 3, H. 3, 262 (1951).Google Scholar
  23. Rudali, G., B. Desormeaux et L. Juliand: Nierentumoren nach Behandlung mit Androgen (19 Monate) bei Mäusen. Bull Ass. franç. Cancer 43, 445 (1956).PubMedGoogle Scholar
  24. Vasquez-Lopez, E.: The relation of the pituitary gland and related hypothalamic centres in the hamster to prolonged treatment with oestrogens. J. Path. Bact. 56, 1 (1944).CrossRefGoogle Scholar

a) Mammacarcinom

  1. Ahren, K., and D. Jacobsohn: Mammary growth in hypophysectomized rats injected with ovarian hormones and insulin. Acta physiol. scand. 37, 190–203 (1956).PubMedCrossRefGoogle Scholar
  2. Andervont, H. B.: The incidence of mammary tumors in mice of strain C3I1 and its descendants of fostered strain C. J. nat. Cancer Inst. 10, 193 (1949).PubMedGoogle Scholar
  3. Andervont, H. B.: Studies on the disappearance of the mammary tumor agent in mice of strains Chi and C. J. nat. Cancer Jnst. 10, 201 (1949).Google Scholar
  4. Andervont, H. B., and T. B. Dunn: Mammary tumors in mice presumably free of the mammary tumor agent. J. nat. Cancer Inst. 8, 227–233 (1948).PubMedGoogle Scholar
  5. Andervont, H. B., and T. B. Dunn: Attempt to detect a mammary tumor-agent in strain C mice by X-radiation. J. nat. Cancer Inst. 10, No. 5, 1157 (1950).PubMedGoogle Scholar
  6. Andervont, H. B., and T. B. Dunn: Influences of heredity and the mammary tumor agent on the occurrence of mammary tumors in hybrid mice. J. nat. Cancer Inst. 14, No. 2, 317 (1953).PubMedGoogle Scholar
  7. Andervont, H. B., and T. B. Dunn, and H. Y. Canter: Susceptibility of agent-free inbred mice and their Fl hybrids to estrogen-induced mammary tumors. J. nat. Cancer Inst. 21, No. 4 (1958).Google Scholar
  8. Armstrong, E. C.: Observations on the nature of the oestrous cycle and on the effect upon it of the milk factor, in mice of two inbred strains, differing in mammary cancer incidence. Brit. J. Cancer 2, 59 (1948).PubMedCrossRefGoogle Scholar
  9. Ball, Z. B., R. A. Husery and M. B. Vissuuar: The effect of dietary pseudo-hypophysectomy upon the development of the mammary glands and mammary tumors in mice receiving diethylstilbestrol. Cancer Res. 6, 493 (1946).Google Scholar
  10. Bern, H. A., S. Nandi and K. B. Deome: Survival and regression of hyperplastic nodules in the mammary glands of hypophysectomized C3H mice. Proc. Amer Ass. Cancer Res. 2, 187 (1957).Google Scholar
  11. Bierich, R., u. A. Rosenbohm: Der Einfluß von Follikelhormon and lokaler Disposition auf die Brustkrebsentstehung bei der Maus. Z. Krebsforsch. 53, Nr. 2, 57 (1942).CrossRefGoogle Scholar
  12. Bittner, J. J.: Possible relationship of the estrogenic hormones, genetic susceptibility and milk influence in the production of mammary cancer in mice. Cancer Res. 2, 710–721 (1942).Google Scholar
  13. Bittner, J. J.: The mammary tumor milk agent. Ann. N. Y. Acad. Sci. 49, 69 (1947).CrossRefGoogle Scholar
  14. Bittner, J. J.: The causes and control of mammary cancer in mice. Harvey Lect. 13, 221 (1946–1947).Google Scholar
  15. Bittner, J. J.: The causes of mammary cancer in mice. Acta Un. int. Caner. 6, 175 (1948).Google Scholar
  16. Bittner, J. J.: Some enigmas associated with the genesis of mammary cancer in mice. Cancer Res. 8, 625 (1948).PubMedGoogle Scholar
  17. Brrpner, J. J.: Studies on the inherited susceptibility and inherited hormonal influence in the genesis of mammary cancer in mice. Cancer Res. 12, 594 (1952).Google Scholar
  18. Brrpner, J. J.: Transfer of the agent for mammary cancer in mice by the male. Cancer Res. 12, 387 (1952).Google Scholar
  19. Brrpner, J. J.: The genesis of breast cancer in mice. Tex. Rep. Biol. Med. 10, No. 1, 160 (1952).Google Scholar
  20. Brrpner, J. J.: Inherited hormonal mechanisms and mammary cancer: in NH mice and their hybrids.Cancer Res. 13, No. 9, 672 (1953).Google Scholar
  21. Brrpner, J. J.: Mammary cancer in mice observed in different laboratories and during the war period. J. nat. Cancer Inst. 15, No. 2 (1954).Google Scholar
  22. Brrpner, J. J.: Inherited hormonal mechanisms and mammary cancer in CE mice and their hybrids. Cancer Res. 14, 783 (1954).Google Scholar
  23. Brrpner, J. J.: Experimental aspects of mammary cancer in mice. In: E. F. LEwIson, ed., Breast Cancer. S. 75. Baltimore: Williams and Wilkins (1955).Google Scholar
  24. Brrpner, J. J.: Mammary cancer in C311 mice of different sublines and their hybrids. J. nat. Cancer Inst. 16, No. 5 (1956).Google Scholar
  25. Brrpner, J. J.: Mammary-cancer-inducing and inhibitory inherited hormonal patterns in mice. J. nat. Cancer Inst. 21, No. 4 (1958).Google Scholar
  26. Brrpner, J. J., and M. J. Frantz: Spontaneous mammary cancer in mice of the CE stock. Cancer Res. 14, 81–85 (1954).Google Scholar
  27. Brrpner, J. J., and R. A. Huseby: Relationship of the inherited susceptibility and the inherited hormonal influence to development of mammary cancer in mice. Cancer Res. 6, 235–239 (1946).Google Scholar
  28. Brrpner, J. J., and R. A. Huseby: Some inherited hormonal factors influencing mammary carcinogenesis in virgin mice. I. Genetic studies, S. 361–368. In: E. S. Gordon (ed.), A Symposium on Steroid Hormones. Madison: Univ. of Wisc. Press 1950.Google Scholar
  29. Brrpner, J. J., and D. T. Imagawa: Effect of the source of the mouse mammary tumor agent (Mta) upon neutralization of the agent with antisera. Cancer Res. 15, No. 7, 464 (1955).Google Scholar
  30. Bonser, G. M.: Carcinoma of the male breast in mice induced with oestrin: effect of a vitamin-A-deficient diet combined with oestrin treatment. J. Path. Bact. 41, 33 (1935).CrossRefGoogle Scholar
  31. Bonser, G. M.: The effect of oestrone administration on the mammary glands of male mice of two strains differing greatly in their susceptibility to spontaneous mammary carcinoma. J. Path. Bact. 42, 169 (1936).CrossRefGoogle Scholar
  32. Bonser, G. M., L. H. Stickland and K. L. Connal: Krebserzeugung durch Oestron bei weiblichen Mäusen eines Stammes, in dem keine Spontanrupturen vorkommen. J. Path. Bact. 45, 709 (1937); Zbl. allg. Path. path. Anat. 70, 43 (1938).Google Scholar
  33. Boot, L. M., and O. MÞHlbock: The mammary tumour incidence in the C3H mousestrain with and without the agent (C3H, C3H f, C3He). Acta Un. int. Cancer, 12, 569 (1956).Google Scholar
  34. Boot, L. M., and O. MÞHlbock, G. RÖPcke, and Van Ebbenhorst Tengbergen: Further investigations on induction of mammary cancer in mice by isografts of hypophyseal tissue. Cancer Res. 22, 713–727 (1962).PubMedGoogle Scholar
  35. Boyland, E., and K. L. Sydnor: The induction of mammary cancer in rats. Brit. J. Cancer 16, 731 (1962).PubMedCrossRefGoogle Scholar
  36. Bryan, W. R.: Some Biological Considerations of Tumor Viruses. Unio internationalis contra cancrum conference on cellular control mechanisms and cancer, p. 338–355.Google Scholar
  37. Bryan, W. R.: Amsterdam: Elsevier Publishing Company 1964.Google Scholar
  38. Burrows, H.: The localization of response to oestrogenic compounds in the organs of male mice. J. Path. Bact. 41, 423 (1936).CrossRefGoogle Scholar
  39. Burrows, H.: A comparison of the changes induced by some pure oestrogenic compounds in the mammae and testes of mice. J. Path. Bact. 42, 161 (1936).CrossRefGoogle Scholar
  40. Burrows, H.: Biological actions of sex hormones. Sec. ed. Cambridge (Engl.): Univ. Press 1949.Google Scholar
  41. Burrows, H., and C. Hoch-Liceti: Effect of progesterone on the development of mammary cancer in C3H mice. Cancer Res. 6, 608–609 (1946).PubMedGoogle Scholar
  42. Butenandt, A.: Zur physiologischen Bedeutung des Follikelhormons und der östrogenen Wirkstoffe für die Genese des Brustdrüsenkrebses und die Therapie des Prostata-Carcinoms. Dtsch. med. Wschr. 75, Nr. 1 (1950).Google Scholar
  43. Butenandt, A.: Karzinogene Stoffe und Tumorgenese. Verh. dtsch. Ges. Path. 35, 70 (1952).Google Scholar
  44. Cantarow, A., J. Stasney and K. E. Paschkis: The influence of sex hormones an mammary tumors induced by 2-acetylaminofluorene. Cancer Res. 8, 412 (1948).PubMedGoogle Scholar
  45. Casas, C. B., J. T. King and M. B. Visscher: Effects of caloric restriction on the adrenal response of ovariectomized C3H mice. Amer. J. Physiol. 157, 193–196 (1949).PubMedGoogle Scholar
  46. Com, C. F.: The influence of ovariectomy on the spontaneous occurrence of mammary carci-nomas in mice. J. exp. Med. 45, 983 (1927).CrossRefGoogle Scholar
  47. Cramer, W, and E. S. Horning: Þber Verhütung des spontanen Brustkrebses der Maus durch thyreotropes Hypophysenhormon. Lancet 234, 72 (1938); Zbl. allg. Path. path. Anat. 71, 371 (1939).Google Scholar
  48. Cutts, J. H.: Estrone-induced mammary tumors in the rat. Cancer Res. 24,1124–1130 (1964). —, and R. L. Noble: Estrone-induced mammary tumors in the rat. I. Induction and behavior of tumors. Cancer Res. 24, 1116–1123 (1964).Google Scholar
  49. Daane, T. A., and W. R. Lyons: Effect of estrone, progesterone and pituitary mammotropin on the mammary glands of castrated C3H male mice. Endocrinology 55, 191–199 (1954).PubMedCrossRefGoogle Scholar
  50. Deonze, K. B.: The role of the mammary tumor virus in mouse mammary nodulligenesis and tumorigenesis in viruses, nucleic acids and cancer, p. 488. Baltimore: The Williams and Wilkins Comp. 1963.Google Scholar
  51. Deonze, K. B., L. J. Faulin, H. A. Bern u. P. B. Blair: Cancer Res. 13, 515 (1959).Google Scholar
  52. Deringer, M. K., W. E. Heston and H. B. Andervont: Estrus in virgin strain C3H (high-tumor) and virgin strain A (low-tumor) mice and in reciprocal (AxC3H) F, hybrids. J. nat. Cancer Inst. 5, 403 (1945).Google Scholar
  53. Dmochowski, L.: Mammary tumour inducing factor and genetic constitution. Brit. J. Cancer 2, 94 (1948).PubMedCrossRefGoogle Scholar
  54. Dmochowski, L.: Survival of the milk factor in a transplantable breast tumour in mice. Brit. J. Cancer 3, 246 (1949).PubMedCrossRefGoogle Scholar
  55. Dmochowski, L.: Some data on the distribution of the milk factor. Brit. J. Cancer 3, 525 (1949).PubMedCrossRefGoogle Scholar
  56. Dmochowski, L., and J. W. Orr: Induction of breast cancer by oestrogens and methylcholanthrene in highand-low breast cancer strain mice. Brit. J. Cancer 3, 376–383 (1949).PubMedCrossRefGoogle Scholar
  57. Dmochowski, L., and J. W. Orr: Chemically induced breast tumours and the mammary tumour agent. Brit. J. Cancer 3, 520 (1949).PubMedCrossRefGoogle Scholar
  58. Dubnik, C. S., H. P. Morris und A. J. Dalton: Verhinderung der Entwicklung der Milchdrüse und der Mammatumoren bei weibl. C3H-Mäusen nach Zuführung von Thiouracil. J. nat. Cancer Inst. 10, 815 (1950); Arch. Geschwulstforsch. 4, H. 3, 293 (1952).Google Scholar
  59. Dunning, W.F., andM.R. Curtis: The incidence of diethylstilbestrol-induced cancer in reciprocal F, hybrids obtained from crosses between rats of inbred lines that are susceptible and resistant to the induction of mammary cancers by this agent. Cancer Res. 12, 702–706 (1952).PubMedGoogle Scholar
  60. Dunning, W.F.: Further studies on the relation of dietary tryptophan to the induction of neoplasms in rats. Cancer Res. 14, 299–302 (1954).PubMedGoogle Scholar
  61. Dunning, W.F.: The respective roles of longevity and genetic specificity in the occurrence of spontaneous tumors in the hybrids between two inbred lines of rats. Cancer Res. 6, 61–81 (1956).Google Scholar
  62. Dunning, W.F., and M. E. Madsen: Diethylstilbestrol-induced mammary gland and bladder cancer in reciprocal F, hybrids between two inbred lines of rats. Acta Un. in Caner.; Cancer Res. 7, 238–244 (1951).Google Scholar
  63. Dunning, W.F., and M. E. Malin: The effect of dietary fat and carbohydrates on diethylstilbestrol-induced mammary cancer in rats. Cancer Res. 9, 354–361 (1949).PubMedGoogle Scholar
  64. Dunning, W.F., and M. E. Malin: The effect of dietary tryptophane on the occurrence of diethylstilbestrol-induced mammary cancer in rats. Cancer Res. 10, 319–323 (1950).PubMedGoogle Scholar
  65. Dunning, W.F., and A. Segaloff: Strain differences in response to diethyl-stilbestrol and the induction of mammary gland and bladder cancer in the rat. Cancer Res. 7, 511 (1947).Google Scholar
  66. Dunning, W.F., and A. Segaloff: Strain differences in response to diethylstilbestrol and the induction of mammary gland, adrenal and bladder cancer in the rat. Rev. Acta., No. 1, Communications du Congrès des St. Louis, 1948.Google Scholar
  67. Dunning, W.F., and A. Segaloff: Strain differences in response to estrone and the induction of mammary gland, adrenal and bladder cancer in rats. Cancer Res. 13, 147–152 (1953).PubMedGoogle Scholar
  68. Eisen, M. J.: The occurrence of benign and malignant mammary lesions in rats treatet with crystalline estrogen. Cancer Res. 2, 632 (1944).Google Scholar
  69. Fischer, W., u. J. KÞHL: Geschwülste der Laboratoriumstiere. Dresden, Leipzig: Theodor Steinkopff 1958.Google Scholar
  70. Furth, J., K. H. Clifton, E. L. Gadsden and R. F. Buffet: Dependent and autonomous mammatropic pituitary tumors in rats. Their somatotropic features.Cancer Res. 16, 608 (1956).Google Scholar
  71. Gardner, W. U.: Growth of the mammary glands in hypophysectomized mice. Proc. Soc. exp. Biol. (N. Y.) 45, 835–837 (1940).CrossRefGoogle Scholar
  72. Gardner, W. U.: The effect of estrogen on the incidence of mammary and pituitary tumors in hybrid mice. Cancer Res. 1, 345 (1941).Google Scholar
  73. Gardner, W. U.: Inhibition of mammary growth by large amounts of estrogen. Endocrinology 28, 53 (1941).CrossRefGoogle Scholar
  74. Gardner, W. U.: Persistence and growth of spontaneous mammary tumors and hyperplastic nodules in hypophysectomized mice. Cancer Res. 2, 476–478 (1942).Google Scholar
  75. Gardner, W. U., and R. T. Hill: Effect of progestin upon the mammary glands of the mouse. Proc. Soc. exp. Biol. (N. Y.) 34, 718–720 (1936).CrossRefGoogle Scholar
  76. Gardner, W. U., G. M. SMrrx, E. Allen and L. C. Strong: Erzeugung von Brustdrüsenkrebs in männlichen Mäusen durch Oestrin. Arch. Path. (Chicago) 21, 265 (1936); Zbl. allg. Path. path. Anat. 65, 335 (1936).Google Scholar
  77. Gardner, W. U., and L. C. Strong: Strain-limited development of tumors of the pituitary gland in mice receiving estrogens. Yale J. Biol. Med. 12, 543–548 (1940).Google Scholar
  78. Gardner, W. U., and L. C. Strong, and G. M. Smitn: The mammary glands of mature female mice of strains varying in susceptibility to spontaneous tumor development. Amer. J. Cancer 37, 510 (1939).Google Scholar
  79. Gardner, W. U., and A. White: Mammary growth in hypophysectomized male mice. Anat. Rec. 82, 414 (1942).Google Scholar
  80. Gass, G. H., D. Coats, and N. Graham: Carcinogenic dose-response curve to oral diethylstilbestrol. J. nat. Cancer Inst. 33, 971 (1964).PubMedGoogle Scholar
  81. Geschickter, C. F.: Mammary cancer in the rat with metastasis induced by estrogen. Science 89, 35 (1939).PubMedCrossRefGoogle Scholar
  82. Geschickter, C. F.: Mammary carcinoma in the rat with metastasis induced bei estrogen. Science 89, 35–37 (1939).PubMedCrossRefGoogle Scholar
  83. Geschickter, C. F.: Estrogenic mammary cancer in the rat. Radiology 33, 439 448 (1939).Google Scholar
  84. Geschickter, C. F.: Mammary cancer in the rat. Acta Un. int. Caner. 5, 109 (1940).Google Scholar
  85. Geschickter, C. F., and E. W. Byrnes: Factors influencing the development and time of appearence of mammary cancer in the rat in response to estrogens. Arch. Path. (Chicago) 33, 334–356 (1942).Google Scholar
  86. Gomez, E. T., and C. W. Turner: Non-effect of estrogenic hormones on mammary gland of hypophysectomized guinea pig. Proc. Soc. exp. Biol. (N. Y.) 34 (1936).Google Scholar
  87. Gomez, E. T., and C. W. Turner, W. U. Gardner and R. T. Hill: Oestrogenic treatment of hypophysectomized male mice. Proc. Soc. exp. Biol. (N. Y.) 36, 287–290 (1937).Google Scholar
  88. Grad, B., J. Berenson and L. Caplan: The influence of hyper-and hypothyroidism on the incidence of lymphogenous leukemia in Akr mice. Proc. Amer. Ass. Cancer Res. 2 (1), 20 (1955).Google Scholar
  89. Graffi, A., u. H. Bielka: Probleme der experimentellen Krebsforschung. Leipzig: Gless and Portig 1959.Google Scholar
  90. GRoss, J., and S. Schwartz: Der Umsatz von Thyroxin in C 57-Mäusen und in C3H-Mäusen mit und ohne Mammatumoren. Cancer Res. 11, 614 (1951); Arch. Geschwulstforsch. 4, H. 3, 295 (1952).Google Scholar
  91. Van Gulik, P. J., and R. Korteweg: Susceptibility to follicular hormone and disposition to mammary cancer in female mice. Amer. J. Cancer 38, 506 (1940).Google Scholar
  92. Hagen, E. O., and H. E. RAwLIxs0N: The induction of mammary cancer in male mice by isologous pituitary implants. Cancer Res. 24, 59–60 (1964).PubMedGoogle Scholar
  93. Heiman, J.: Comparative effects of estrogen testosterone and progesterone on benign mammary tumors of the rat. Cancer Res. 3, 65 (1943).Google Scholar
  94. Heiman, J.: Effect of testosterone propionate on the adrenals and on the incidence of mammary cancer in the Riii strain of mice. Cancer Res. 4, 31 (1944).Google Scholar
  95. Heiman, J.: The effect of progesterone and testosterone propionate on the incidence of mammary cancer in mice. Cancer Res. 5, 426 (1945).Google Scholar
  96. Heston, W. E.: Genetics of mammary tumors in mice. In “Symposium on mammary tumors in mice”. Public. Amer. Ass. Adv. Sci., No. 22 (1945).Google Scholar
  97. Heston, W. E.: Localization of gene action in the causation of lung and mammary gland tumors in mice. J. nat. Cancer Inst. 15, 775–783 (1954).PubMedGoogle Scholar
  98. Heston, W. E.: Induction of mammary gland tumors in strain C 57 BL/He. Mice by isografts of hypophyses. J. nat. Cancer Inst. 32, 947–955 (1964).Google Scholar
  99. Heston, W. E., and M.K. Deringer Occurrence of tumors in agent-free strain C3Hf male mice implan- ted with estrogencholesterol pellets. Proc. Soc. exp. Biol. (N. Y.) 82, 731–734 (1953).Google Scholar
  100. Heston, W. E., and M.K. Deringer, and T. B. Dunn: Further studies on the relationship between the genotype and the mammary tumor agent in mice. J. nat. Cancer Inst. 16, No. 6, 1309 (1956).PubMedGoogle Scholar
  101. Heston, W. E., and M.K. Deringer, and T. B. Dunn, and W. D. Levillain: Factors in the development of spontaneous mammary gland tumors in agent-free strain C3H mice. J. nat. Cancer Inst. 10, 1139–1151 (1950).PubMedGoogle Scholar
  102. Heston, W. E., and W. D. Levillain: Mammary gland tumors in aline of C3H mice deprived of the milk agent. Cancer Res. 9, 544 (1949).Google Scholar
  103. Heston, W. E., and G. Vlahakis: Influence of the a gene on mammary-gland tumors. Hepatomas, and normal growth in mice. J. nat. Cancer Inst. 26, 969–983 (1961).PubMedGoogle Scholar
  104. Howard, B., B. Thelma and Y. Harry: Susceptibility of agent-free inbred mice and theirFl hybrids to estrogen-induced mammary tumors. J. nat. Cancer Inst. 21, No. 4 (1958).Google Scholar
  105. Huggins, CH.: Hormonabhängige Geschwülste — klinisch und experimentell. Klin. Wschr. 36,H. 23, 1102 (1958).CrossRefGoogle Scholar
  106. Huseby, R. A., and J. Bittner: Die Entwicklung von Mammakrebs in Kastraten eines Stammes männlicher Mäuse mit Ovarienimplantaten. Cancer Res. 11, 450 (1951); Arch. Geschwulstforsch. 4, H. 3, 291 (1952).Google Scholar
  107. Jacobsohn, D.: Action of estradiol monobenzoate on the mammary glands of hypophysectomized rabbits. Acta physiol. stand. 32, 304–313 (1954).CrossRefGoogle Scholar
  108. Johnson, R. M., and J. Mettes: Effect of cortisone, hydrocortisone and Acth on mammary growth and pituitary prolactin content of rats. Proc. Soc. exp. Biol. (N. Y.) 89, 455–458 (1955).CrossRefGoogle Scholar
  109. Jones, E. E.: The effect of testosterone propionate on mammary tumors in mice of the C3H strain. Cancer Res. 1, 787 (1941).Google Scholar
  110. Jull, J. W.: The effects of oestrogens and progesterone on the chemical induction of mammary cancer in mice of the IF strain. J. Path. Bact. 68, 547–559 (1954).PubMedCrossRefGoogle Scholar
  111. Kaufmann, C.: Þber die Wirkung fortgesetzter Zufuhr unphysiologischer Mengen Follikel-hormon auf das Genitale weiblicher Ratten. Mschr. Geburtsh. Gynäk. 105, 188 (1937).Google Scholar
  112. Kaufmann, C., u. H. A. MÞLler: Bemerkung zu der Arbeit von A. Butenandt. Dtsch. Med. Wsch. 1950, 1409.Google Scholar
  113. Kaufmann, C., u. H. A. MÞLler, A. Biitenandt u. H Friedrich-Fret sA: Experimentelle Bedeutung des Follikelhormons für die Carcinomentstehung. Z. Krebsforsch. 56, 482 (1949).CrossRefGoogle Scholar
  114. King, J. T., C. B.Casas and M. B. VisscnER: The influence of estrogen on cancer incidence and adrenal changes in ovariectomized mice on caloric restriction. Cancer Res. 9, 436–437 (1949).PubMedGoogle Scholar
  115. Kirkham, W R, and C. W. Turner: Induction of mammary growth in rats by estrogen and progesterone. Proc. Soc. exp. Biol. (N. Y.) 87, 139 (1954).CrossRefGoogle Scholar
  116. Kirschbaum, A.: The role of hormones in cancer: laboratory animals. Cancer Res. 17, 432 (1957).PubMedGoogle Scholar
  117. Kirschbaum, A., and J. J. Bittner: Relation of the milk influence to the carcinogenic induction of mammary cancer in mice. Proc. Soc. exp. Biol. (N. Y.) 58, 18–19 (1945).CrossRefGoogle Scholar
  118. Korteweg, R.: Genetically determined differences in hormone production, a possible factor influencing the susceptibility to mammary cancer in mice. Brit. J. Cancer 2, 91 (1948).PubMedCrossRefGoogle Scholar
  119. Kumi, A., u. J. Furth’ Mammary carcinoma in mice bearing a transplantable mammotropic tumor, carrying the Bittner virus. Proc. Soc. exp. Biol. (N. Y.) 114, 709–714 (1963).CrossRefGoogle Scholar
  120. Lacassagne, A.: L’ apparition de cancers de la mamelle chez la souris mâle soumis à des in-jections de folliculine. C. R. Acad. Sci. (Paris) 195, 630–632 (1932).Google Scholar
  121. Lacassagne, A.: Einfluß eines familiären Faktors auf die Entstehung von Mammakrebsen bei der männlichen Maus mittels Follikulin C R Soc. Biol. (Paris) 114, No. 31, 427 (1933); Zbl. allg. Path. path. Anat. 60, 214 (1934).Google Scholar
  122. Lacassagne, A.: Tumeurs malignes apparues au cours d’un traitement hormonal combiné chez des souris appartenant à des lignées réfractaires au cancer spontané. C. R. Soc. Biol. (Paris) 121, 607 (1936).Google Scholar
  123. Lacassagne, A.: Tentatives pour modifier, par la progestérone ou par la testostérone, l’apparition des adénocarcinomes mammaires provoquées par l’oestrone chez la souris. C. R. Soc. Biol. (Paris) 126, 385 (1937).Google Scholar
  124. Lacassagne, A.: Statistique des différents cancers constatés dans des lignées selectionnées de souris, après action prolongée d’hormones oestrogènes. Bull. Ass. franç. Cancer 27, No. 2 (1938).Google Scholar
  125. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann 1950.Google Scholar
  126. Lacassagne, A.: Die hormonell bedingten Krebse. Strahlentherapie 1950, 83.Google Scholar
  127. Lacassagne, A.: Der Krebs hormonaler Herkunft. Paris méd. 41, 8: 101, (1951); Dtsch. med. Wschr. 76, Nr. 23, 786 (1951).Google Scholar
  128. Lacassagne, A.: Endocrine factors concerned in the genesis of experimental mammary carcinoma. J. Endocr. 13, 9 (1955).Google Scholar
  129. Lacassagne, A., et A Chamorro: Conséquences de l’hypophysectomie chez des souris sujettes au carci-nome mammaire traitée par hormone oestrogène. C. R. Soc. Biol. (Paris) 131, 1077 (1939).Google Scholar
  130. Lathrop, A. E. C., and L. Loeb: The influence of pregnancies on the incidence of cancer in mice. Proc. Soc. exp. Biol. (N. Y.) 11, 38–40 (1913).CrossRefGoogle Scholar
  131. Lathrop, A. E. C., and L. Loeb: Further investigations on the origin of tumors in mice. Iii. On the part played by internal secretion in the spontaneous development of tumors. J. Cancer Res. 1, 1–19 (1916).PubMedGoogle Scholar
  132. Liebelt, R. A., and N. E. Eckles: Effects of castration and adrenalectomy on mammary cancer growth in R Iii mice. Proc. Amer. Ass. Cancer Res. 2, 227 (1957).Google Scholar
  133. Lipschutz, A.: Steroid hormones and tumors. Baltimore: Williams and Wilkins Comp. 1950.Google Scholar
  134. Lipschutz, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: Heifer and Sons, Ltd. 1957. Loeb, L.: Am. J. med. Res. 8, 274 (1924).Google Scholar
  135. Lipschutz, A.: The significance of hormones in the origin of cancer. J. nat. Cancer Inst. 1, 169 (1940).Google Scholar
  136. Lipschutz, A., H. T. Blumenthal and M. M. Kirtz: The effectiveness of ovarian and hypophyseal grafts in the production of mammary carcinoma in mice. Science 99, 230–232 (1944).CrossRefGoogle Scholar
  137. Lipschutz, A., and M. M. Kirtz: The effects of transplants of anterior lobes of the hypophysis on the growth of the mammary gland and on the development of mammary gland carcinoma in various strains of mice. Amer. J. Cancer 36, 56–82 (1939).Google Scholar
  138. Loeser, A. A.: Mammary carcinoma response to implantation of male hormone and progesterone. Lancet 1941, II, 698.CrossRefGoogle Scholar
  139. Lyons, W. R., R. E. Johnston, R. D. Cole and CH. H. Li: Mammary growth and lactation in male rats. In: R. W. Smith jr., O. H. Gaebler and C. N. H. Long (eds.), The Hypophyseal Growth Hormone, Nature and Actions. 401. New York: Mc. Graw-Hill, Broc. Co. Inc. 1953.Google Scholar
  140. Lyons, W. R., CH. H. Li and R. E. Johnston: Direct action of mammary stimulating hormones. J. clin. Endocr. 16, 367 (1956).CrossRefGoogle Scholar
  141. Mackenzie, I: The production of mammary cancer in rats using oestrogen. Brit. J. Cancer 9, 284–299 (1955).PubMedCrossRefGoogle Scholar
  142. Mark, J., and G. R. Biskind: The effect of long term stimulation of male and female rats with estrone, estradiol benzoate and testosterone proprionate administered in pelled form. Endocrinology 28, 465 (1941).CrossRefGoogle Scholar
  143. Martinez, C., and J. J. Bittner: Effect of ovariectomy, adrenalectomy and hypophysectomy on growth of spontaneous mammary tumors in mice. Proc. Soc. exp. Biol. (N. Y.) 86, 92–95 (1954).CrossRefGoogle Scholar
  144. Moon, H. D., M. E. Simpson, CH. H. Li and A. M. Evans: Effects of pituitary growth hormone in mice. Cancer Res. 12, 448 (1952).PubMedGoogle Scholar
  145. Mählbock, O.: The sensitivity of the mammary gland to oestrone in different strains of mice with and without mammary tumour agent. Acta endocr. (Kbh.) 3, 105 (1949).Google Scholar
  146. Hlbock, O.: The effect of steroids on the incidence of mammary tumours in mice. Ciba Found. Coll. Endocr. 1, 112 (1952).Google Scholar
  147. Hlbock, O.: Hormonal genesis of mammary cancer in mice. Acta endocr. (Kbh.) 10, No. 2 (1954).Google Scholar
  148. Hlbock, O.: Experimentelle Untersuchungen über die Genese des Mamma-Karzinoms. Strahlentherapie 96, H. 2 (1955).Google Scholar
  149. Hlbock, O.: Experimentelle Untersuchungen über die Genese des Mamma-Karzinoms. Schweiz. med. Wschr. 85, Nr. 17, 387 (1955).Google Scholar
  150. Hlbock, O.: Studies on the hormone dependence of experimental breast tumors in mice. In: A. R. Currie and C. F. W. Illingworth (eds.), Endocrine Aspects of Breast Cancer. 291–296. Edinburgh: E. and S. Livingstone, Ltd. 1958.Google Scholar
  151. Hlbock, O., and T. G. Van Rijssel: Studies on mammary tumors in the Ogo Amsterdam strain of mice. J. nat. Cancer Inst. 15, 73–98 (1954).Google Scholar
  152. Murray, W. S.: Ovarian secretion and tumor incidence. Science 66, 600 (1927).PubMedCrossRefGoogle Scholar
  153. Murray, W. S.: Amer. J. Cancer 20, 572 (1934).CrossRefGoogle Scholar
  154. Nathanson, I. T., and H. B. Andervont: Effect of testosterone propionate on development and growth of mammary carcinoma in female mice. Proc. Soc. exp. Biol. (N. Y.) 40, 421 (1939).CrossRefGoogle Scholar
  155. Nelson, W. O.: The induction of mammary carcinoma in the rat. Yale. J. Biol. Med. 17, 217 (1944).PubMedGoogle Scholar
  156. Noble, R. L., and J. P. CoLlip: Regression of estrogen-induced mammary tumors in female rats following removal of the stimulans. Canad. med. Ass. J. 44, 1 (1941).Google Scholar
  157. Noble, R. L., and J. H. Cutts: Mammary tumors of the rat. Cancer Res. 19, 1125 (1959).PubMedGoogle Scholar
  158. Noble, R. L., C. S. Mceuen, and J. B. CoLlip: Mammary tumors produced in rats by the action of oestrone tablets. Canad. med. Ass. J. 42, 413–417 (1940).Google Scholar
  159. Noble, R. L., and J. H. Walters: The effect of hypophysectomy on 9,10-Dimethyl-1–2-benzanthraceneinduced carcinogenesis. Proc. Amer. Ass. Cancer Res. 1, 35 (1954).Google Scholar
  160. Picoh, A.: Der Einfluß der Kastration auf die Entwicklung des Fibroadenoma mammae der Ratte. Tumori 22, 231 (1936); Zbl. allg. Path. path. Anat. 65, 308 (1936).Google Scholar
  161. Pilgrim, H. I.: A method of evaluating tumor morbidity as applied to the effect of ovariectomy at different ages on the development of mammary tumors in C3H mice. Cancer Res. 17, 405–408 (1957).PubMedGoogle Scholar
  162. Pullinger, B. D.: The significance of functional differentiation in mammary tumours. Lancet 1949 II, 823.CrossRefGoogle Scholar
  163. Pullinger, B. D.: Prevalence of spontaneous benign and malignant mammary tumors in Riiib mice according to age and parity. Brit. J. Cancer 9, 613–619 (1955).PubMedCrossRefGoogle Scholar
  164. Ranadive, K. J.: Relative importance of heredity, hormones and milk borne tumour agent in inducing mammary carcinoma in mice. Indian. J. med. Sci. 7, No. 10, 545–555 (1953).Google Scholar
  165. Ranadive, K. J., and V. R. Khanolkar: Effect of foster-nursing on the morphology of mammary glands in mice.Acta Un. int. Cancr. 6, 155 (1948).Google Scholar
  166. Robson, J. M., and G. M. Bonser: Production of mammary carcinomas in mice in a susceptible strain by the synthetic oestrogen triphenylethylene. Nature (London) 142, 846 (1938).Google Scholar
  167. Shay, H., M. Gruenstein u. W. B. Kessler: Experimentell erzeugtes Adenoca. der Mamma bei Ratten. J. nat. Cancer Inst. 27, 503–513 (1961).Google Scholar
  168. Shimkin, M. B.: Hormones and mammary cancer in mice. In “Symp. on Mam. Tum. in Mice.” Public. Am. Ass. Adv. Sci. No. 22, Washington 1945.Google Scholar
  169. Shimkin, M. B., and H. B. Andervont: Effect of foster nursing on the response of mice to estrogens. J. nat. Cancer Inst. 1, 599 (1941).Google Scholar
  170. Shimkin, M. B.: Effect of foster nursing on the induction of mammary and testicular tumors in mice injected with stilbestrol. J. nat. Cancer Inst. 2, 611 (1942).Google Scholar
  171. Shimkin, M. B., and R. S. Wyman: Effect of adrenalectomy and ovariectomy on mammary carcinogenesis in strain C3H mice. J. nat. Cancer Inst. 6, 187–189 (1945).PubMedGoogle Scholar
  172. Shimkin, M. B., and R. S. Wyman: Mammary tumors in male mice implanted with estrogen-cholesterol pellets. J. nat. Cancer Inst. 7, 71 (1946).PubMedGoogle Scholar
  173. Silberberg, M., and R. Silberberg’ Mammary growth in orchidectomized mice grafted with anterior lobes of hypophyses and ovaries at various ages. Arch. Path. (Chicago) 49, 733751 (1950).Google Scholar
  174. Silberberg, R., and M. Silberberg: Mammary cancer in castrate male mice receiving ovarian. and hypophyseal grafts at different ages. Proc. Soc. exp. Biol. (N. Y.) 70, 510–513 (1949).CrossRefGoogle Scholar
  175. Silberberg, R., and M. Silberberg: Influence of age on mammary growth and involution in male mice treated with estrogen. Arch. Path. (Chicago) 48, 557 (1949).Google Scholar
  176. Slattery, P. A.: Lack of effect of lactogenic hormone on mammary adenocarcinoma in mice. Soc. exp. Biol. (N. Y.) 74, 539 (1950).CrossRefGoogle Scholar
  177. Smith, F. W.: The relationship of the inherited hormonal influence to the production of adrenal cortical tumors by castration. Cancer Res. 6, 641 (1948).Google Scholar
  178. Suntzeff, V., M. M. Kirtz, H. T. Blumenthal and L. Loeb: The incidence of mammary gland carcinoma and cancer age in mice injected with estrogen and non-injected mice of different strains. Cancer Res. 1, 446 (1941).Google Scholar
  179. Symeonidis, A.: Mammary tumor incidence by progesterone in mice. Acta Un. int. Caner. 6, 163 (1948).Google Scholar
  180. Symeonidis, A.: The initiation and growth of tumors. Introduction. I. Effects of underfeeding. Amer. J. Cancer 38, 335 (1940).Google Scholar
  181. Tannenbaum, A.: Nutrition and cancer. In: F. Homburger and W. H. Fishman (eds.), The Physiopathology of Cancer. 392–437. New York: Hoeber-Harper 1953.Google Scholar
  182. Trentin, J.: The effect of the presence or absence of the milk faktor and of castration on mammary tumor response to estrogen in male mice of strain of known mammary tumor incidence. Cancer Res. 11, 286 (1951).Google Scholar
  183. Twombley, G. H.: Breast cancer produced in male mice of the C57 (Black) strain of little. Proc. Soc. exp. Biol. (N. Y.) 44, 617–618 (1940).CrossRefGoogle Scholar
  184. White, F. R., and J. White: Effect of diethylstilbestrol on mammary tumor formation in strain C3H mice fed a low cystine diet. J. nat. Cancer Inst. 4, 413–415 (1944).Google Scholar
  185. Woolley, G. W., E. Fekete and C. C. Little: Mammary tumor development in mice ovari-ectomized at birth. Proc. nat. Acad. Sci. (Wash.) 25, 277–279 (1939).CrossRefGoogle Scholar
  186. Woolley, G. W., E. Fekete and C. C. Little: Effect of castration in the dilute brown strain of mice. Endocrinology 28, 341 (1941).CrossRefGoogle Scholar
  187. Wright, A. W., G. H. Klincx and J. M. Wolff: Pathologie and Pathogenese spontan auftretender Mammatumoren bei Albany-Ratten. Amer. J. Path. 16, No. 6 (1940); Zbl. allg. Path. path. Anat. 78, 17 (1942).Google Scholar

b) Hormone and Leukämie

  1. Andervont, H. B., and T. B. Dunn: Effect of castration and sex hormones on the induction of tumors in mice with o-aminoazotoluence. J. nat. Cancer Inst. 7, 455–461 (1947).PubMedGoogle Scholar
  2. Bielschowsky, F., and E. S. HoRz nG: Aspects of endocrine carcinogenesis. Brit. med. Bull. 14, 106 (1958).Google Scholar
  3. Bischoff, E., M. L. Long, J. J. Rupp and G. J. Clark’ Influence of toxic amounts of estrin upon intact and castrated male Marsh-Buffalo mice. Cancer Res. 2, 198 (1942).Google Scholar
  4. Clifton, K. H.: Problems in experimental tumorigenesis of the pituitary gland, gonads, adrenal cortices, and mammary glands: a review. Cancer Res. 19, 2 (1959).PubMedGoogle Scholar
  5. Cole, R. K., and J. Furth: Experimental studies on the genetics of spontaneous leukemia in mice. Cancer Res. 1, 957 (1941).Google Scholar
  6. Dmochowski, L., and E. S. Horning: The influence of the male and female sex hormones on the development of lymphoid tumours in mice. Ciba Found. Coll. Endocr. 1, 24 (1952).Google Scholar
  7. Dougherty, T. F.: Effect of hormones on lymphatic tissue. Physiol. Rev. 32, 379 (1952). Furth, J.: Recent experimental studies on leukemia. Physiol. Rev. 26, 48 (1946).Google Scholar
  8. Dougherty, T. F., and M. Booty: The time and site of origin of the leukemic cell. A. A. A. S. Res. Conference on Cancer Am. Assoc. Science Washington D. C. 1945. S. 129.Google Scholar
  9. Dougherty, T. F., R. K. Cole and M. C. Booty: Effect of maternal influence upon spontaneous leukemia of mice. Cancer Res. 2, 280 (1942).Google Scholar
  10. Gardner, W. U.: Studies on steroid hormones in experimental carcinogenesis. Recent Progress in Hormone Research. Proc. Laurentian Horm.-Conf. 1, 217 (1947).Google Scholar
  11. Gardner, W. U.: Ovarian and lymphoid tumors in female mice subsequent to Roentgen-ray irradiation and hormone treatment. Proc. Soc. exp. Biol. (N. Y.) 75, 434 (1950).CrossRefGoogle Scholar
  12. Gardner, W. U., T. F. Dougherty and W. L. Williams: Lymphoid tumors in mice receiving steroid hormones. Cancer Res. 4, 73–87 (1944).Google Scholar
  13. Gardner, W. U., A. Kirschbaum and L. C. Strong: Lymphoid tumors in mice receiving estrogens. Arch. Path. (Chicago) 29, 1–7 (1940).Google Scholar
  14. Gardner, W. U., and J. Rygaard: Further studies on the incidence of lymphomas in mice exposed to X-rays and given sex hormones. Cancer Res. 14, 205–209 (1954).PubMedGoogle Scholar
  15. Grad, B., J. Berenson and L. Caplan: The influence of hyper-and hypothyroidism on the incidence of lymphogenous leukemia in Akr mice. Proc. Amer Ass. Cancer Res. 2 (1), 20 (1955).Google Scholar
  16. Heilmann, F., and E. Kendall: The influence of 11-dehydro-17-hydrocorticosterone on the growth of malignant tumor in mouse. Endocrinology 34, 416 (1944).CrossRefGoogle Scholar
  17. Kaplan, H. S.: Influence of thymectomie, splenectomie and gonadectomie on incidence of radiation-induced lymphoid tumors in strain C 57 black mice. J. nat. Cancer Inst. 11, 83 (1950).PubMedGoogle Scholar
  18. Kaplan, H. S., and M. B. Brown: Inhibition by testosterone of radiation-induced lymphoid tumors development on intact and castrate adult male mice. Cancer Res. 11, 706–708 (1951).PubMedGoogle Scholar
  19. Kaplan, H. S., and M. B. Brown: Inhibition by testosterone of radiation-induced lymphoid tumors development in intact and castrate male mice. Cancer Res. 12, 262 (1952).Google Scholar
  20. Kaplan, H. S., and M. B. Brown: Testosterone prevention of post-irradiation lymphomas in C57 black mice. Cancer Res. 12, 445 (1952).PubMedGoogle Scholar
  21. Kaplan, H. S., and M. B. Brown: B. Hirsch and W. Carnes: Further studies on lymphoma development in non-irradiated thymic implants in thymectomized irradiated C57BL mice. Proc. Amer. Ass. Cancer Res. 2, 27 (1955).Google Scholar
  22. Kaplan, H. S., and M. B. Brown, and S. N. Marder: Adrenal cortical function and lymphoid tumor incidence in irradiated mice. Cancer Res. 11, 263 (1951).Google Scholar
  23. Kaplan, H. S., and M. B. Brown, and S. N. Marder: Adrenal cortical function and lymphoid tumor incidence in irradiated mice. Cancer Res. 11, 629–633 (1951).PubMedGoogle Scholar
  24. Kaplan, H. S., and M. B. Brown,, and J. Paull: Influence of postirradiation thymectomy and of thymic implants on lymphoid tumor incidence in C57BL mice. Cancer Res. 13, 677 (1953).PubMedGoogle Scholar
  25. Kaplan, H. S., B. B. Hirsch and M. B. Brown: Indirect induction of lymphomas in irradiated mice. IV. Genetic evidence of the origin of tumor cells from the thymic grafts. Cancer Res. 16, 434–436 (1956).PubMedGoogle Scholar
  26. Kirschbaum, A.: Rodent leukemia: Recent biological studies. A review. Cancer Res. 11, 741 (1951).PubMedGoogle Scholar
  27. Kirschbaum, A.: The role of hormones in cancer: laboratory animals. Cancer Res. 17, 432 (1957).PubMedGoogle Scholar
  28. Kirschbaum, A.: Genetic and nongenetic factors influencing the induction of mouse leukemie. The Leukemias: Etiology, Pathophysiology and Treatment. New York: Academic Press Inc. 1957.Google Scholar
  29. Kirschbaum, A.: Etiology of the leukemias: Chemical and hormonal factors in mice. Proc. Cancer Conf. 1957.Google Scholar
  30. Kirschbaum, A., A G Liebelt and N. G. Falls: Influence of gonadectomy and androgenic hormone on the induction of leukemia by methylcholanthrene in Dba/2 mice. Cancer Res. 15, 685–688 (1955).PubMedGoogle Scholar
  31. Kirschbaum, A., Thymus and the carcinogenic induction of mouse leukemia. Cancer Res. 15, 689 (1955). —, and H. W. Mixer: Induction of leukemia in eight inbred stocks of mice varying in susceptibility to the spontaneous disease. J. clin. Med. 32, 720 (1947).Google Scholar
  32. Kirschbaum, A., J. R. Shapiro and H. W. Mixer: Synergistic action of estrogenic hormone and X-rays in inducing thymic lymphosarcoma of mice. Proc. Soc. exp. Biol. (N. Y.) 72, 632 (1949).CrossRefGoogle Scholar
  33. Kirschbaum, A., J. R. Shapiro and H. W. Mixer: Synergistic action of leukemogenic agents. Cancer Res. 13, 262–268 (1953). Lacassagne, A.: Sarcomes lymphoïdes apparus chez des souris longuement traitées par des hormones oestrogènes. C. R. Soc. Biol. (Paris) 126, 193 (1937).Google Scholar
  34. Kirschbaum, A.: Statistique des différents cancers constatés dans des lignées selectionées de souris après action prolongées d’hormones oestrogènes. Bull. Ass. franç. Cancer 27, 96 (1938).Google Scholar
  35. Kirschbaum, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann 1950.Google Scholar
  36. Lannek, N.: The effect of adrenalcorticotrophic hormone (Acth), cortisone and hydro-cortisone on the growth of experimental lymphoid tumors in chicks. Brit. J. Cancer 6, 369 (1952).PubMedCrossRefGoogle Scholar
  37. Law, L.: Characterization of an influence affecting growth of transplantable leukemias in mice. Cancer Res. 4, 257 (1944).Google Scholar
  38. Law, L.: Observations on the effect of thymectomy on spontaneous leukemias in mice of the High-leucemie strains Ril and C58. J. nat. Cancer Inst. 12, 253 (1952).Google Scholar
  39. Law, L.: Increase in incidence of leukemia in hybrid mice bearing thymic transplants from High-leukemic strain. J. nat. Cancer Inst. 12, 789 (1952).PubMedGoogle Scholar
  40. L. E. Bunker and B. A. Norris: Effect of gonadectomy and adrenalectomy on the appearance and incidence of spontaneous lymphoid leukemia in C 58 mice. J. nat. Cancer Inst. 8, 157–159 (1947).Google Scholar
  41. Law, L., and J. Miller: The influence of thymectomy on the incidence of carcinogen-induced leukemia in strain Dba mice. J. nat. Cancer Inst. 11, 425 (1950).PubMedGoogle Scholar
  42. Lipscaumz, A.: Steroid hormones and tumors. Baltimore: Williams and Wilkins Comp. 1950.Google Scholar
  43. Lipscaumz, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: Heller and Sons, Ltd. 1957.Google Scholar
  44. Mcenny, D. P., M. C. Boon and J. Forth: On the role of thymus, spleen, and gonads in the development of leukemia in a high leukemic stock of mice. Cancer Res. 4, 337–383 (1944).Google Scholar
  45. Mercier, L., et L. Gosselin: Hérédité du lymphosarcome de la souris; hypothèse explicative de cette hérédité. Bull. Acad. Méd. (Paris) 119, 106 (1933).Google Scholar
  46. Mercier, L.: Hérédité du cancer à l’intérieur d’une lignée de souris. Notion de facteur plasmo-chromosomique. C. R. Soc. Biol. (Paris) 127, 92 (1938).Google Scholar
  47. Moon, H. D., M. E. Simpson, CH. H. Li and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. I. Pulmonary and lymphatic tissues. Cancer Res. 10, 297 (1950).PubMedGoogle Scholar
  48. Murphy, J. B.: The effect of castration, theelin, and testosterone on the incidence of leukemia in a Rockefeller Institute strain of mice. Cancer Res. 4, 622 (1944).Google Scholar
  49. Murphy, J. B. and E. Sturm: The adrenals and susceptibility to transplanted leukemia of rats. Science 98, 568 (1943).PubMedCrossRefGoogle Scholar
  50. Murphy, J. B. and E. Sturm: The effect of adrenal cortical and pituitary adrenotropic hormones on transplanted leukemia in rats. Science 99, 303 (1944).PubMedCrossRefGoogle Scholar
  51. Nagareda, C. S., and H. S. Kaplan: The effect of hypophysectomy and X-irradiation on lymphoid organs and on the induction of lymphoid tumors in C 57 BL mice. J. nat. Cancer Inst. 16, 139–152 (1955).PubMedGoogle Scholar
  52. Pearson, O. H., L. P. Eliel, R W. Rawson, K. Dobriner and C. P. Rhoads: Acth- and cortisone-induced regression of lymphoid tumors in man. A preliminary report. Cancer (Philad.) 2, 943 (1949).CrossRefGoogle Scholar
  53. Silberberg, M., and R. Silberberg: Malignant lymphoid tumors in orchidectomized mice receiving hypophysial and ovarian grafts at various ages. Proc. Soc. exp. Biol. (N. Y.) 72, 547 (1949).CrossRefGoogle Scholar
  54. Silberberg, M., and R. Silberberg: Leukemogenic action of adreno-corticotrophic hormone (Acth) in mice of various ages. Cancer Res. 15, 291 (1955).PubMedGoogle Scholar
  55. Skipper, H.: Partial reversal of the antileukemic activity of A-methopterin by cortisone. Cancer Res. 14, 86 (1954).PubMedGoogle Scholar
  56. Stoerk, H. C.: Growth retardation of lymphosarcoma implants in pyridoxine-deficient rats by testosterone cortisone. Proc. Soc. exp. Biol. (N. Y.) 74, 798–800 (1950).CrossRefGoogle Scholar
  57. Sturm, E., and J. B. Murphy: The effect of adrenalectomy on the susceptibility of rats to a transplantable leukemia. Cancer Res. 4, 384 (1944).Google Scholar
  58. Toch, P., B. Hirsch, M. P. Brown and H. S. Kaplan: Lymphoid tumor incidence in C57 BL mice treated with estrogen and whole-body X-radiation. Proc. Amer. Ass. Cancer Res. 2 (1), 51 (1955).Google Scholar
  59. Woolley, G. W.: Cortisone, related steroids on transplanted tumors on the mouse. Cancer Res. 11, 291 (1951).Google Scholar
  60. Woolley, G. W., and B. A. Peters: Prolongation of life in high-leukemic Akr mice by cortisone. Proc. Soc. exp. Biol. (N. Y.) 82, 286–287 (1953).CrossRefGoogle Scholar

C. a) Hypophysenhormone

  1. Agate, F. J., jr., W. Antoros, S. Blaubach, F. Agate and S. Graff: The nonessentiality of the hypophysis for the induction of tumors with 3,4-benzpyrene. Cancer Res. 15, 6–8 (1955).Google Scholar
  2. Arons, M. S., A. S. Ketcham u. N. Mantel: Die Wirkung von Wachstumshormon und Acth auf einen transplantierten Tumor. Cancer 14. 507–511 (1961).PubMedCrossRefGoogle Scholar
  3. Baatz, H.: Die Beeinflussung des Spontantumorwachstums der Maus durch Prolan. Z. Geburtsh. Gynäk. 120, 70 (1939).Google Scholar
  4. Ball, H. A., and L. T. Samuels: The relation of the hypophysis to the growth of malignant tumors. Iii. The effect of hypophysectomy on autogenous tumors. Amer. J. Cancer 26, 547 (1936).Google Scholar
  5. Ball, H. A., and L. T. Samuels: The relation of the hypophysis to the growth of malignant tumors. Amer. J. Cancer 32, 50 (1938).CrossRefGoogle Scholar
  6. Bielschowsky, F., and M. Bielschowsky: Carcinogenesis in the pituitary dwarf mouse. The response to dimethylbenzathracene applied to the skin. Brit. J. Cancer 15, 257 (19M).Google Scholar
  7. Bielschowsky, F., and E. S. Horning: Aspects of endocrine carcinogenesis. Brit. med. Bull. 14, 106 (1958).Google Scholar
  8. Bischoff, F., L. Maxwell and H. Ullmann Hormones in cancer; influence of hypophysis. Amer. J. Cancer 21, 329 (1934).Google Scholar
  9. Bittner, J.: Possible relationship of the estrogenic hormones genetic susceptibility and milkinfluence in the production of mammary cancer in mice. Cancer Res. 2, 710 (1942).Google Scholar
  10. Boot, L. M., et O. MÞHlbock: Mammary gland carcinogenesis by isografts of pituitaries in mice. Acta Un. Caner. 15, No. 1 (1959).Google Scholar
  11. Büngeler, W., H. W. Dontenwill: Hormonell ausgelöste geschwulstartige Hyperplasien,hyperplasiogene Geschwülste und ihre Verhaltensweisen. Dtsch. med. Wschr. 1959, 1885.Google Scholar
  12. Burchenal, J. H., C. C. Stock and C. P. Rhoads: The effects of cortisone and Acth on transplanted mouse leukemia. Cancer Res. 10, 209 (1950).Google Scholar
  13. Cantarow, S., T. L. Williams, and K. E. Paschkis: Hormonal and nutritional influences on the incorporation of uracil into liver and tumor Rna in the rat. Cancer Res. 22, 1021–1025 (1962).PubMedGoogle Scholar
  14. Cater, D. B., R. Baserga u. H. Lisco: Studien zur Induktion von Knochen-und Weichteiltumoren durch Y-Strahlen bei Ratten zur Wirkung von Wachstumshormon und Thyroxin. Brit. J. Cancer 13, 214–227 (1959).PubMedCrossRefGoogle Scholar
  15. Clifton, K. H.: Problems in experimental tumorigenesis of the pituitary gland, gonads, adrenal cortices, and mammary glands: a review. Cancer Res. 19, 2 (1959).PubMedGoogle Scholar
  16. Cramer, W.: Verhütung spontanen Mammakrebses bei der Maus durch Hypophysenvorderlappenhormon. Amer. J. Cancer 40, No. 4 (1940).Google Scholar
  17. Cramer, W., and E. Horning: Prevention of spontaneous mammary cancer in mice by the thyrotropic hormone of the pituitary gland. Lancet 1938 I, 72.CrossRefGoogle Scholar
  18. Cruveilier, L., J. Haguenan, G. Thieulin et C. Viala: Influence de l’hormone gonadotrope sur l’évolution de la tumeur de Shope du lapin. C. R. Soc. Biol. (Paris) 127, 485 (1938).Google Scholar
  19. Daniel, P. M., and M. M. L. Prichard: The response of experimentally induced mammary tumours in rats to hypophysectomy and to pituitary stalk section. Brit. J. Cancer 17, 446–453 (1963).PubMedCrossRefGoogle Scholar
  20. Dontenwill, W.: Die Bedeutung hormonaler Einflüsse für die Enstehung und das Wachstum bösartiger Geschwülste. Habilitationsschrift Kiel 1954.Google Scholar
  21. Dontenwill, W.: Experimentelle Untersuchungen über den Einfluß von Hormonen auf das Walker-Carcinom der Ratte und auf die Entwicklung des Benzpyrentumors der Mäusehaut. Z. Krebsforsch. 60, 482 (1955).PubMedCrossRefGoogle Scholar
  22. Druckrey, H.: Die Wirkung der Hypophyseninkretion auf Geschwülste. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak. 180, H. 4, 367 (1936).CrossRefGoogle Scholar
  23. Druckrey, H.: Hypophysenvorderlappen und Krebs. Z. Krebsforsch. 45, 352 (1937).CrossRefGoogle Scholar
  24. Elsner, P., u. H. Tischer: Veränderungen am Ovar bei hormonbehandelten Mammacarcinomen. Arch. Gynäk. 181, 462 (1952).CrossRefGoogle Scholar
  25. Engel, P.:iper den Einfluß von Hypophysenvorderlappenhormon und Epiphysenhormon auf das Wachstum von Impftumoren. Z. Krebsforsch. 41, 281 (1934).Google Scholar
  26. Engel, F., and A. Murray: Amer. J. Obstet. Gynec. 32, 593 (1936). Siehe Engel, F., Steroid metabolism in cancer. In: F. Homburger and W. H. Fishman, eds., Physiopathology of Cancer. London: Cassel and Co. 1953.Google Scholar
  27. Engelbreth-Holm, J., and E. Jensen: On the mechanism of experimental carcinogenesis. X. Acta path. microbiol. scand. 23, 257 (1953).Google Scholar
  28. Ferguson, D. J.: The effect of hypophysectomy on the development of adrenal tumors in C3H mice. Cancer Res. 13, 405 (1953).PubMedGoogle Scholar
  29. Ferguson, D. J., and M. B. Visscher: The effect of hypophysectomy on the development of adrenal tumors in C3H mice. Cancer Res. 13, 405 (1953).PubMedGoogle Scholar
  30. Fischer, W., u. I. KüHL: Geschwülste der Laboratoriumsnagetiere. Dresden, Leipzig: Theodor Steinkopff 1958.Google Scholar
  31. Franseen, C. C., and C. Mctiernan: The effect of hypophysectomy upon the metabolism of grafted tumor tissue. Amer. J. Cancer 26, 106 (1936).CrossRefGoogle Scholar
  32. Funk, C.: The effect of hormonal factors and the removal of certain organs upon the growth of a transplanted rat tumor. Brit. J. Cancer 5, 280 (1951); Arch. Geschwulstforsch. 5, 75 (1953).Google Scholar
  33. Funk, C.,PH. Tomashefsky, A. Ehrlich and R. SouKur: Die Rolle der Hypophysebeim Wachstum eines transplantablen Rattentumors. Proc. Soc. exp. Biol. (N. Y.) 74, 289 (1950).CrossRefGoogle Scholar
  34. Gardner, W. U.: Persistence and growth of spontaneous mammary tumors and hyperplastic nodules in hypophysectomized mice. Cancer Res. 2, 476 (1942).Google Scholar
  35. Gottschalk, R. G., and A. Grollman: The action of cortisone and Acth on transplanted mouse tumors. Cancer Res. 12, 651 (1952).PubMedGoogle Scholar
  36. Griffin, A. C., A. P. Rinfret and V. F. CoRsigilia: The inhibition of liver carcinogenesis with 3’-methyl-4-dimethylaminoazobenzene in hypophysectomized rats. Cancer Res. 13, 77 (1953).PubMedGoogle Scholar
  37. Gross, L.: Zur Frage des Einflusses der Hypophysenvorderlappengeschlechtshormone auf das Tumorwachstum bei Mäusen. Z. Krebsforsch. 38, 289 (1933); Zbl. allg. Path. path. Anat. 58, 208 (1933).Google Scholar
  38. Haran-Ghera, N.: The role of mammotrophin in mammary tumor induction in mice. Cancer Res. 21, 790–795 (1961).PubMedGoogle Scholar
  39. Haven, F. L., W. D. Mayer and W. R. Bloor: Growth hormone and tumór phospholipids: effects on tumor and body growth. Cancer Res. 17, 948–953 (1957).PubMedGoogle Scholar
  40. Hayashi, T.: Trans. Jap. Path. Soc. 20, 661 (1930).Google Scholar
  41. Heiman, J.: Anterior pituitary gland in tumor-bearing rats. Amer. J. Cancer 33, 423 (1938).Google Scholar
  42. Heston, W. E.: Complete inhibition of occurence of spontaneous hepatomas in higly susceptible (C3H x Ybr)F1 male mice by hypophysectomy. J. nat. Cancer Inst. 31, 467–474 (1963).PubMedGoogle Scholar
  43. Hofbauer, J.: The interaction of hormone-induced tissue growth and vital inorganic elements in uterine carcinogenesis. Amer. J. Obstet. Gynec. 63, 136 (1952).PubMedGoogle Scholar
  44. Bscher, K.: Die biologische Hyperämiebehandlung von Adnexentzündungen mit Hypophysenvorderlappenhormon. Zbl. Gynäk, 57, 1575 (1933).Google Scholar
  45. Huggins, CH.: Functions of the Cancer Cell. Z. Krebsforsch. 67, 106–112 (1965). Julius, H. W.: Acta brev. neerl. Physiol. 4, 74 (1934).Google Scholar
  46. Katz, K.: Hypophysenvorderlappen und Krebs. Z. Krebs. orsch. 45, 139 (1936). Kirschbaum, A.: The role of hormones in cancer: Laboratory animals. Cancer Res. 17, 432 (1957).Google Scholar
  47. Klärner, P.: Wirkung von Adaptionshormonen auf Urethan-Lungentumoren der adrenalektomierten Maus. Z. Krebsforsch. 61, 276 (1956).PubMedCrossRefGoogle Scholar
  48. Koneff, A., H. Moon, M. Simpson, CH. LI and H. Evans: Neoplasms in rats treated with pituitary growth hormone. Cancer Res. 11, 113 (1951).PubMedGoogle Scholar
  49. Korteweg, R., and F. Thomas: Tumor induction and tumor growth in hypophysectomized mice. Amer. J. Cancer 37, 36–44 (1949).Google Scholar
  50. Krehbiel, O, C Haagensen and H. Plantenga: Effect of anterior pituitary hormones on growth of mouse sarcoma. Amer. J. Cancer 21, 346 (1934).CrossRefGoogle Scholar
  51. Lacassagne, A. Hypophyse und Krebs. Oncologia (Basel) 23, 3–4 (1949).Google Scholar
  52. Lacassagne, A.: Les cancers produits par des substances chimiques endogènes. Paris: Hermann 1950.Google Scholar
  53. Lacassagne, A.: Hypophyse und Krebs. Strahlentherapie 83, 429 (1950).PubMedGoogle Scholar
  54. Lacassagne, A., et A. Chamorro: Conséquences de l’hypophysectomie chez des souris sujettes au carcinome mammaire, traitées par hormone oestrogène. C. R. Soc. Biol. (Paris) 131, 1077–1078 (1939).Google Scholar
  55. Lacassagne, A., et W. Nyka: Einfluß des Hypophysenmangels auf die Geschwulstentwicklung beim Kaninchen. C. R. Soc. Biol. (Paris) 121, 822 (1936); Zbl. allg. Path. path. Anat. 65, 332 (1936).Google Scholar
  56. Lanneck, N.: The effect of adrenocorticotrophic hormone (Acth), cortisone, and hydrocortisone on the growth of experimental lymphoid tumors in chicks. Brit. J. Cancer 6, 369376 (1953).Google Scholar
  57. LI, Ch. H., H. M. Evans and D. I. Simpson: J. biol. Chem. 159, 353 (1945).Google Scholar
  58. Lipschutz, A.: Steroid hormones and tumors. Baltimore: Williams and Wilkins Comp. 1950.Google Scholar
  59. Lipschutz, A.: Steroid homeostasis hypophysis and tumorigenesis. Cambridge: I4effer and Sons, Ltd. 1957. Ludwig, F., u. J. v. Ries: Schweiz. med. Wschr. 1935, 5.Google Scholar
  60. Loeb, L., and M. M. Kirtz: The effects of transplants of anterior lobes of the hypophysis on the growth of the mammary gland and the development of mammary gland carcinoma in various strains of mice. Amer. J. Cancer 36, 56 (1939).Google Scholar
  61. Loefer, J. B.: Growth of sarcoma in hypophysectomized rats. Cancer (Chic.) 5, 161 (1952).CrossRefGoogle Scholar
  62. Martinez, C., and J. Bittner: Effect of ovariectomy, adrenalectomy and hypophysectomy on growth of spontaneous mammary tumors in mice. Repr. Proc. Soc. exp. Biol. (N. Y.) 86, 92–95 (1954).CrossRefGoogle Scholar
  63. McAlpin, R., S. Blair, D. Gillies, W. Lyons and CH. Li: The effects of long term administration of prednisolone and growth hormone on the growth of transplanted mammary adenocarcinoma in C3H mice. Cancer (Chic.) 11, 731 (1958).Google Scholar
  64. Mceuen, C., and D. Thomson: Effect of hypophysectomy on growth of Walker rat tumor. Brit. J. exp. Path. 14, 384 (1933).Google Scholar
  65. Min-Hsin, L., T. Hai-Ying, CH. Ting-Hsien, and T. Yung-Sheng: Influence of hormones on carcinogenesis of uterine cervix of mice induced by methylcholanthrene. Chinae med. J. 81, 800–812 (1962).Google Scholar
  66. Mirand, E. A., and J. G. Hoffman: Effect of pituitary growth hormone on transplantable mouse tumors. Proc. Soc. exp. Biol. (N. Y.) 95, 819–824 (1957).CrossRefGoogle Scholar
  67. Miller, H.: Die Beziehungen zwischen Hypophysenvorderlappenhormon und Tumorwachs- tum. Frankfurt. Z. Path. 45, H. 3 (1933); Zbl. allg. Path. path. Anat. 66, 91 (1936/37).Google Scholar
  68. Moox, H. D., CH. H. Li and M. E. Simpson: Effect of pituitary hormones on carcinogenesis with 9,10-dimethyl-1,2-dibenzanthracene in hypophysectomized rats. Cancer Res. 16, 111–116 (1956).Google Scholar
  69. Moox, H. D., and M. E. Slxison: Effect of hypophysectomy on carcinogenesis: Inhibition of methylcholanthrene carcino-genesis. Cancer Res. 15, 403 (1955).Google Scholar
  70. Moox, H. D., and M. E. Slxison, and H. Evans: Inhibition of methylcholanthrene carcinogenesis by hypophysectomy. Science 116, 331 (1952).CrossRefGoogle Scholar
  71. Moox, H. D., and M. E. Slxison, CH. H. LI and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. I. Pulmonary and lymphatic tissues. Cancer Res. 10, 297–308 (1950).Google Scholar
  72. Moox, H. D., and M. E. Slxison, CH. H. LI and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. II. Adrenal glands. Cancer Res. 10, 364 (1950).Google Scholar
  73. Moox, H. D., and M. E. Slxison, CH. H. LI and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. Iii. Reproductive organs. Cancer Res. 10, 549 (1950).Google Scholar
  74. Moox, H. D., and M. E. Slxison, CH. H. LI and H. M. Evans: Neoplasms in rats treated with pituitary growth hormone. V. Absence of neoplasms in hypophysectomized rats. Cancer Res. 11, 535 (1951).Google Scholar
  75. Murphy, J., and E. Sturm: J. exp. Med. 60, 293, 305 (1934).PubMedCrossRefGoogle Scholar
  76. Narimatsu, K.: Eine experimentelle Untersuchung über den Einfluß der Hypophysenhormone auf das Wachstum und die Strahlenempfindlichkeit bösartiger Tumoren. Jap. J. Obstet. Gynec. 20, 387 (1939).Google Scholar
  77. Rarei, B., u. H. Gummel: Hypophyseninkretion und Geschwulstwachstum. Z. Krebsforsch. 48, 99 (1938); Zbl. allg. Path. path. Anat. 72, 27 (1939).Google Scholar
  78. Rechicigl, M., and S. H. Wollmyn: Effect of hypophysectomy on the lowering of organ catalase by a transplanted tumor. J. nat. Cancer Inst. 31, 651–669 (1963).Google Scholar
  79. Reid, E.: Growth hormone and adrenocortical hormones in relation to experimental tumors. Cancer Res. 14, 249 (1954).PubMedGoogle Scholar
  80. Reid, E., u. A. Hochwald: Exper. Beeinflussung des Tumorstoffwechsels am lebenden Tier. Med. Kim 1932, Nr. 40, 1391; Zbl. allg. Path. path. Anat. 56, 198 (1932/33).Google Scholar
  81. Reiss, M., H. Druckrey u. A. Hochwald: Tumor und Inkretsystem. Z. ges. exp. Med. 90,408 (1933); Klin Wschr. 12, 1049 (1933).Google Scholar
  82. Richardson, H. L.: The role of hormones in azo-dye induction of liver cancer and the adrenal-lipoid response in hypophysectomized rats. Repr. Cancer 7, No. 5 (1954).Google Scholar
  83. Richardson, H. L., and A. C. Griffin: Hypophysectomy and adrenal histologic changes in rats fed the azo-dye 3-methyl-4-dimethylaminoazobenzene. Proc. Amer. Ass. Cancer Res. 1, No. 1 (1953).Google Scholar
  84. Robert, A., u. P. Klarner: Wirkung von Adaptationshormonen auf Urethan-Lungentumoren der intakten Maus. Arch. Geschwulstforsch. 12, 28 (1956).Google Scholar
  85. Robertson, C. H.: Further observations on the role of the pituitary and the adrenal gland in azo-dye carcinogenesis. Cancer Res. 14, 549–553 (1954).PubMedGoogle Scholar
  86. Robertson, C. H., A. C. Griffin and H. L. Richardson: The inhibitory action of p-hydroxypropiophenone on hepatic carcinoma induced by azo-dye. J. nat. Cancer Inst. 15, 519 (1954).PubMedGoogle Scholar
  87. Robertson, C. H., M. A. O’Neal, A. C. Griffin and H. L. Richardson: Pituitary and adrenal factors involved in azo-dye liver carcinogenesis. Cancer Res. 13, 776–779 (1953).PubMedGoogle Scholar
  88. Rock, T., e G. C. Rabotti: Ricerche sperimentali cuica gli effetti dell’ ipofiscetomia sull’attechimento e sulla crescita del tumore transplantabile di Walker de ratto. Tumori 41, 289–306 (1955).PubMedGoogle Scholar
  89. Rozynek, W.: Þber die Wirkung des Pitressins auf das Wachstum von Benzpyrentumoren. Z. Krebsforsch. 57, 132 (1950); Arch. Geschwulstforsch. 3, 258 (1951).Google Scholar
  90. Samuels, L. T., and H. A. Ball: The relation of the hypophysis to the growth of malignant tumors. Amer. J. Cancer 18, No. 2 (1933).Google Scholar
  91. Samuels, L. T., and H. A. Ball: Hypophysectomy and tumor growth. Amer. J. Cancer 23, 801 (1935).CrossRefGoogle Scholar
  92. Schrimpf, H., u. H. Willig: Tierexperimentelle Untersuchungen über den Einfluß der Hypophysektomie auf das gesteigerte Geschwulstwachstum des Walker-Carcinoms der Ratte nach dem Wurf. Z. Krebsforsch. 59, 366–370 (1953).PubMedCrossRefGoogle Scholar
  93. Schulman, M. P., and D. M. Greenberg: Effect of purified growth hormone on tumor growth. Proc. Soc. exp. Biol. (N. Y.) 72, 676 (1949).CrossRefGoogle Scholar
  94. Selye, H.: Experimentelle Studien über die Wirkung von Adaptationshormonen (Sth,Cortisol) auf transplantierbare Geschwülste. Z. Krebsforsch 60, 316–333 (1955).PubMedCrossRefGoogle Scholar
  95. Simpson, M. E., and H. M. Evans: Effect of pituitary hormones on carcinogenesis induced in rats by 7,12-dimethyl-benzanthracene. Cancer Res. 19, 1096–1104 (1959)PubMedGoogle Scholar
  96. Slattery, P. A., W. R. Lyons and M. B. Sl um$IrI: Lack of effect of lactogenic hormone on mammary adenocarcinoma in mice. Proc. Soc. exp. Biol. (N. Y.) 74, 539–540 (1950).CrossRefGoogle Scholar
  97. Smith, M. C., T. A. Daane, Ch. H. Li, M. B. Shimkin, W. R. Lyons, L. L. Sparks, and D. W. Furnas: Further studies on the effects of pituitary growth hormone (Sth) on C3H mice bearing a transplanted mammary adenocarcinoma. Cancer Res. 14, 386–390 (1954).PubMedGoogle Scholar
  98. Smith, M. C., P. A. Slattery, M. B. Shimkin, Ch. H. LI, R. Lee, J. C. Clarke and W. R. Lyons: The effect of pituitary growth hormone (somatotrophin) on the body weight and tumor growth in C3H mice bearing a transplantable mammary adenocarcinoma. Cancer Res. 12, 59–61 (1952).PubMedGoogle Scholar