Miscellany

  • Edwin Hewitt
  • Kenneth A. Ross
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 152)

Abstract

This chapter treats two topics for which no reasonable home could be found elsewhere. Section 43, dealing with maximal functions in Lp (G), is of interest in its own right. Section 44, which explores pointwise summability of Fourier transforms on groups, is of interest as an extension of the classical theorem of Fejér and Lebesgue, and is also used in an essential way in Theorem (36.18) supra.

Keywords

Convolution Topo Dial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. FejÉR, Leopold; [1] Untersuchungen über Fouriersche Reihen. Math. Ann. 58, 51–69 (1904).MATHCrossRefGoogle Scholar
  2. Lebesgue, Henri; [2] Recherches sur la convergence des séries de Fourier. Math. Ann. 61, 251–280 (1905).MathSciNetMATHCrossRefGoogle Scholar
  3. Lebesgue, Henri; [3] Leçons sur les séries trigonométriques. Collection de Monographies sur la théorie des fonctions. Paris; Gauthier-Villars 1906.Google Scholar
  4. Saks, Stanislaw, and Antoni Zygmund; [1] Analytic functions, English edition. Monografie Matematyczne, Tom Xxviii. Warszawa.Wroclaw; 1952.Google Scholar
  5. Collins, H. S., and W. H. Summers; [1] Some applications of Hewitt’s factorization theorem. Proc. Amer. Math. Soc. 21, 727–733 (1969).MathSciNetMATHGoogle Scholar
  6. Yano, Shigeki; [1] On Walsh-Fourier series. T8hoku Math. J. (2) 3, 223–242 (1951).MATHCrossRefGoogle Scholar
  7. Phillips, Keith L.: [1] Maximal functions for a class of locally compact non-compact groups. Bull. Amer. Math. Soc. 75, 384–386 (1969).MathSciNetMATHCrossRefGoogle Scholar
  8. Collins, H. S., and W. H. Summers; [1] Some applications of Hewitt’s factorization theorem. Proc. Amer. Math. Soc. 21, 727–733 (1969).MathSciNetMATHGoogle Scholar
  9. Cowman, R. R.: [1] Remarks on weak type inequalities for operators commuting with translations. Bull. Amer. Math. Soc. 74, 710–714 (1968).MathSciNetCrossRefGoogle Scholar
  10. Ross, Kenneth A., and Karl Stromberg; [1] Jessen’s theorem On Riemann sums for locally compact groups. Pacific J. Math. 20, 135–147 (1967).MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • Edwin Hewitt
    • 1
  • Kenneth A. Ross
    • 2
  1. 1.Department of Mathematics GN-50University of WashingtonSeattleUSA
  2. 2.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations