Advertisement

Analysis on compact groups

  • Edwin Hewitt
  • Kenneth A. Ross
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 152)

Abstract

In this chapter, we take up a number of special topics in harmonic analysis on compact groups. Section 34 deals with the algebra of absolutely convergent Fourier series, an entity about which a good deal although far from everything is known. Sections 35 and 36 are a detailed treatment of multipliers for various classes of Fourier transforms on compact groups; some facts about locally compact Abelian groups are obtained as well. In § 37, we study lacunary Fourier transforms, again on compact groups, and in § 38, ideal theory for certain convolution algebras of functions on compact groups.

Keywords

Compact Group Left Ideal Compact Abelian Group Dual Object Convolution Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Maschke, Heinrich; [1] Beweis des Satzes, daß diejenigen endlichen linearen Substitutionsgruppen, in welchen einige durchgehends verschwindende Coefficienten auftreten, intransitiv sind. Math. Ann. 52, 363–368 (1899).MathSciNetzbMATHCrossRefGoogle Scholar
  2. Frobenius, Georg; [2] Über die Primfactoren der Gruppendeterminante. Sitzungsber. Preuss. Akad. Wiss. 1896, 1343–1382. Also in Gesammelte Abhandlungen, Bd. Iii, pp. 38–77. Berlin-Heidelberg-New York; Springer 1968.Google Scholar
  3. Schur, Issai; [3] Neue Begründung der Theorie der Gruppencharaktere. Sitzungsber. Preuss. Akad. Wiss. 1905, 406–432.Google Scholar
  4. Hecke, Erich; [1] Über orthogonal-invariante Integralgleichungen. Math. Ann. 78, 398–404 (1918). Also in Math. Werke, pp. 208–214. Göttingen; Vandenhoeckand Ruprecht 1959.Google Scholar
  5. Kampen, E. R. Van; [2] Almost periodic functions and compact groups. Ann. of Math. (2) 37, 78–91 0 1936 ).Google Scholar
  6. Neumann, John vox;;See Segal, Irving E.Google Scholar
  7. Frobenius, Georg; [3] Über Relationen zwischen den Charakteren einer Gruppe und denen ihrer Untergruppen. Sitzungsber. Preuss. Akad. Wiss. 1898, 501–515. Also in Gesammelte Abhandlungen, Bd. Iii, pp. 104–118. Berlin-Heidelberg-New York; Springer 1968.Google Scholar
  8. Amitsur, A. S., and J. Levitzki; [1] Minimal identities for algebras. Proc. Amer. Math. Soc. 1, 449–463 (1950).MathSciNetzbMATHGoogle Scholar
  9. Nakayama, Tadasi;. [2] A remark on representations of groups. Bull. Amer. Math.Soc. 44, 233–235 (1938).MathSciNetCrossRefGoogle Scholar
  10. Weil, AndrÉ; [4] L’intégration dans les groupes topologiques et ses applications. Actualités Sci. of Ind. 869, 1145. Paris; Hermann and Cie. 1941 and 1951.Google Scholar
  11. Mackey, George W.: [6] On induced representations of groups. Amer. J. Math. 73, 576–592 (1951).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • Edwin Hewitt
    • 1
  • Kenneth A. Ross
    • 2
  1. 1.Department of Mathematics GN-50University of WashingtonSeattleUSA
  2. 2.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations