Advertisement

Fourier transforms

  • Edwin Hewitt
  • Kenneth A. Ross
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 152)

Abstract

This chapter presents basic facts about Fourier transforms on both locally compact Abelian and arbitrary compact groups, many of which are needed for the detailed analysis in Chapters Nine, Ten, and Eleven. The Fourier transform as defined in (23.9) is a complex-valued function on the character group of a locally compact Abelian group. For a compact non-Abelian group, the Fourier transform is an operator-valued function defined on the dual object (28.34). Parts of the theory can be described simultaneously for compact and for locally compact Abelian groups, and we will do this wherever possible.

Keywords

Compact Group Banach Algebra Haar Measure Character Group Factorization Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Helson, Henry; [1] On the ideal structure of group algebras. Arkiv för Mat. 2, 83–86 (1952).MathSciNetMATHCrossRefGoogle Scholar
  2. Bochner, Salomon; [1] Vorlesungen über Fouriersche Integrale. Leipzig; Akademische Verlagsgesellschaft 1932. Reprinted by Chelsea Publ. Co., New York, 1948.Google Scholar
  3. Bochner, Salomon; [4] Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse. Math. Ann. 108, 378–410 (1933).MathSciNetCrossRefGoogle Scholar
  4. Weil, AndrÉ; [4] L’intégration dans les groupes topologiques et ses applications. Actualités Sci. of Ind. 869, 1145. Paris; Hermann and Cie. 1941 and 1951.Google Scholar
  5. Williamson, J Ohn H.: [3] Raikov systems and the pathology of M(R). Studia Math. 31, 399–409 (1968).MathSciNetMATHGoogle Scholar
  6. Povzner, A. IIonanep, A.: [1] Über positive Funktionen auf einer Abelschen Gruppe. Dokl. A.ad. Nauk Sssr, N. S. 28, 294–295 (1940).Google Scholar
  7. GelFand, I. M. LreamPang, H. M., and M. A. Naimark [M. A. HafMapn]; [2] Normed rings with involution and their representations [HopMnponammle xonbI;a C nnsorot;nelt H six npeucTaBJlenna]. Izv. Akad. Nauk Sssr, Ser. Mat. 12, 445–480 (1948).MATHGoogle Scholar
  8. Godement, Roger; [2] Sur la théorie des représentations unitaires. Ann. of Math. (2) 53, 68–124 (1951).MathSciNetMATHCrossRefGoogle Scholar
  9. Riesz, Frbdaric; [8] Über Sätze von Stone und Bochner. Acta Sci. Math. Szeged 6, 184–198 (1932–34). Also in Gesammelte Arbeiten, Bd. II, pp. 1135–1149. Budapest; Akadémiai Kiadó 1960.Google Scholar
  10. Williamson, J Ohn H.: [2] Harmonic analysis on semigroups. J. London Math. Soc. 42, 1–41 (1967).MathSciNetMATHCrossRefGoogle Scholar
  11. Williamson, J Ohn H.: [3] Raikov systems and the pathology of M(R). Studia Math. 31, 399–409 (1968).MathSciNetMATHGoogle Scholar
  12. Neumann, John vox; [11] Úber einen Satz von Herrn M. H. Stone. Ann. of Math. (2) 33, 567–573 (1932). Also in Collected Works, Vol. II, pp. 287–293. New York; Pergamon Press 1961.Google Scholar
  13. Lichtman, Denis R.: [1] The closed span of the translates of functions in, 3 (G). Doctoral dissertation, University of Washington 1968. Seattle, Washington; University of Washington Library.Google Scholar
  14. Littlewood, J. E.: [1] The converse of Abel’s theorem on power series. Proc. London Math. Soc. (2) 9, 434–448 (1911).MATHCrossRefGoogle Scholar
  15. Godement, Roger; [3] Sur une généralisation d’un théorème de Stone. C. R. Acad. Sci. Paris 218, 901–903 (1944).MathSciNetMATHGoogle Scholar
  16. Godement, Roger; [3] Sur une généralisation d’un théorème de Stone. C. R. Acad. Sci. Paris 218, 901–903 (1944).MathSciNetMATHGoogle Scholar
  17. Hewitt, Edwin, and Kenneth A. Ross; [3] The Tannaka-Krein duality theorems. Jber. Deutsch. Math.-Verein. 71, 61–83 (1969).MathSciNetMATHGoogle Scholar
  18. Cartan, Henri, and Roger Godement; [1] Théorie de la dualité et analyse harmonique dans les groupes abéliens localement compacts. Ann. Sci. École Norm. Sup. (3) 64, 79–99 (1947).MathSciNetMATHGoogle Scholar
  19. Brainerd, B., and R. E. Edwards; [1] Linear operators which commute with translations. I, II. J. Austral. Math. Soc. 6, 289–327 and 328–350 (1966).Google Scholar
  20. Bochner, Salomon; 7] A theorem on Fourier-Stieltjes integrals. Bull. Amer. Math. Soc. 40, 271–276 (1934).MathSciNetCrossRefGoogle Scholar
  21. Phillips, Keith L.: [1] Maximal functions for a class of locally compact non-compact groups. Bull. Amer. Math. Soc. 75, 384–386 (1969).MathSciNetMATHCrossRefGoogle Scholar
  22. Eberlein,W. F.: [1] Characterizations of Fourier-Stieltjes transforms. Duke Math. J. 22 465–468 ( 1 955). Google Scholar
  23. KreÌN, M. G. KpeffH, M. I.: [2] A ring of functions on a topological group. Dokl. Akad. Nauk Sssr, N. S. 29, 275–280 (1940).Google Scholar
  24. Rudin, Walter; [10] Fourier analysis on groups. New York, N.Y.: Interscience Publishers 1962.Google Scholar
  25. Berry, Andrew C.: [2] Necessary and sufficient conditions in the theory of Fourier transforms. Ann. of Math. (2) 32, 830–838 (1931).MathSciNetCrossRefGoogle Scholar
  26. Yosida, Kbsaku; [6) On the representation of functions by Fourier integrals. Proc. Imp. Acad. Tokyo 20, 655–660 (1944).Google Scholar
  27. Mackey, George W.: [3] Borel structures in groups and their duals. Trans. Amer. Math. Soc. 85, 134-165 (1957).Google Scholar
  28. Reiter, Hans J.: [5] Sur la propriété (P 1 ) et les fonctions de type positif. C. R. Acad. Sci. Paris 258, 5134–5135 (1964).MathSciNetMATHGoogle Scholar
  29. Reiter, Hans J.: [6] On some properties of locally compact groups. Nederl. Akad. Wetensch. Proc. Ser. A 68 = Indag. Math. 27, 697–701 (1965).MathSciNetGoogle Scholar
  30. Reiter, Hans J.: [7] Classical harmonic analysis and locally compact groups. Oxford Mathematical Monographs. Oxford; Oxford University Press 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • Edwin Hewitt
    • 1
  • Kenneth A. Ross
    • 2
  1. 1.Department of Mathematics GN-50University of WashingtonSeattleUSA
  2. 2.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations