Different Forms of Microbial Manganese Oxidation and Reduction and Their Environmental Significance

  • H. L. Ehrlich


A variety of bacteria have been found to be able to catalyze manganese oxidation. They can be divided into two major groups on a physiological basis. To one of these two groups are assigned those organisms that act on free Mn2+, and to the other group are assigned those organisms that can act only on Mn2+ bound to Mn(IV) oxide. Of the group that attacks free Mn2+ ions, some members seem to be able to derive energy from the reaction while others cannot. So far, all members of a group of seven different organisms that attack only Mn2+ bound to Mn(IV) oxide are able to get energy from the oxidation (Ehrlich, 1976, 1978a; unpublished data).


Manganese Oxide Rensselaer Polytechnic Institute Manganese Nodule Manganese Oxidation Assimilable Organic Carbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M., 1977. Introduction to Soil Microbiology, 2nd ed. John Wiley and Sons, NY, pp. 385–392.Google Scholar
  2. Ali, S.H. and Stokes, J.L., 1971. Stimulation of heterotrophic and autotrophic growth of Sphaerotilus discophorus by manganous ions. Antonie van Leeuwenhoek, 37: 519–528.CrossRefGoogle Scholar
  3. Arcuri, E.J. and Ehrlich, H.L., 1980. Electron transfer coupled to Mn(II) oxidation in two deep-sea Pacific-Ocean bacteria. This volume, pp. 339–344.Google Scholar
  4. Aristovskaya, T.V., 1961. Accumulation of iron in decomposition of organomineral complexes of humus by microorganisms. Dok1. Akad, Nauk SSSR, 136: 954–957.Google Scholar
  5. Aristovskaya, T.V. and Zavarsin, G.A., 1971. Biochemistry of iron in soil. In: A.D. McLaren and J. Skujins (Eds.), Soil Biochemistry, Vol. 2. Marcel Dekker, NY, pp. 385408.Google Scholar
  6. Bromfield, S.M., 1956. Oxidation of manganese by soil microorganisms. Aust. J. Biol. Sci., 9: 238–252.Google Scholar
  7. Bromfield, S.M., 1978. The oxidation of manganous ions under acid conditions by an acidophilous actinomycete from acid soil. Aust. J. Soil Res., 16: 91–100.CrossRefGoogle Scholar
  8. Bromfield, S.M. and David, D.J., 1976. Sorption and oxidation of manganous ions and reduc-tion of manganic oxide by cell suspensions of a manganese oxidizing bacterium. Soil Biol. Biochem., 8: 37–43.CrossRefGoogle Scholar
  9. Cloud, P.E., 1974. Paleoecological significance of the banded iron-formation. Econ. Geol., 68: 1135–1143.CrossRefGoogle Scholar
  10. Crerar, D.A., Fischer, A.G. and Plaza, C.L., 1980. Metallogenium and biogenic deposition of manganese from Precambrian to Recent time. In: I.M. Varentsov (Ed.), Geology and Geochemistry of Manganese,Vol. 3. Hungarian Academy of Science, Budapest, in press.Google Scholar
  11. Dean, W.E. and Ghosh, S.K., 1978. Factors contributing to the formation of ferromanganese nodules in Oneida Lake, New York. J. Res. U.S. Geol. Surv., 6: 231–240.Google Scholar
  12. Douka, C.E., 1977. Study of bacteria from manganese concretions. Precipitation of manganese by whole cells and cell-free extracts of isolated bacteria. Soil Biol. Biochem., 9: 89–97.CrossRefGoogle Scholar
  13. Dubinina, G.A., 1978a. Mechanism of oxidation of divalent iron and manganese by iron bacteria growing in neutral medium. Mikrobiologiya, 47: 591–599.Google Scholar
  14. Dubinina, G.A., 1978b. Functional role of bivalent iron and manganese oxidation in Leptothrix pseudoochracea. Mikrobiologiya, 47: 783–789.Google Scholar
  15. Dubinina, G. and Zhdanov, A.V., 1975. Recognition of the iron bacteria “Siderocapsa” as Arthrobacters and Description of Arthrobacter siderocapsulatus sp. nov. Int. J. Syst. Bacteriol., 25: 340–350.CrossRefGoogle Scholar
  16. Dugolinsky, B.K., Margolis, S.V. and Dudley, W.C., 1977. Biogenic influence on growth of manganese nodules. J. Sed. Petrol., 47: 428–445.Google Scholar
  17. Ehrlich, H.L., 1968. Bacteriology of manganese nodules. H. Manganese oxidation by cell-free extract from a manganese nodule bacterium. Appl. Microbiol., 16: 197–202.Google Scholar
  18. Ehrlich, H.L., 1975. The formation of ores in the sedimentary environment of the deep sea with microbial participation: the case for ferromanganese concretions. Soil Science, 119: 36–41.CrossRefGoogle Scholar
  19. Ehrlich, H.L., 1976, Manganese as an energy source for bacteria. In: J.0. Nriagu (Ed.), Environmental Biogeochemistry, Vol. 2, Metals Transfer and Ecological Mass Balances. Ann Arbor Science, MI, pp. 633–644.Google Scholar
  20. Ehrlich, H.L., 1978a. Inorganic energy sources for chemolithotrophic and mixotrophic bacteria. Geomicrobiol. J., 1: 65–83.CrossRefGoogle Scholar
  21. Ehrlich, H.L., 1978b. Conditions for bacterial participation in the nucleation of manganese deposition around marine sediment particles. In: W. E. Krumbein (Ed.), Environ-mental Biogeochemistry and Geomicrobiology, Vol. 3, Methods, Metals and Assessment. Ann Arbor Science, MI, pp. 839–845.Google Scholar
  22. Ehrlich, H.L., 1980. Bacterial leaching of manganese ores. This volume.Google Scholar
  23. Ehrlich, H.L., Ghiorse, W.C. and Johnson, G.L., 1972. Distribution of microbes in manga-nese nodules from the Atlantic and Pacific Oceans. Dev. Ind. Microbiol., 13: 57–65.Google Scholar
  24. Eleftheriadis, D.K., 1976. Mangan - und Eisenoxydation in Mineral - und Thermal-Quellen - Mikrobiologie, Chemie, und Geochemie. Ph.D. thesis, Universitaet des Saarlandes. Saarbruecken, West Germany.Google Scholar
  25. Jung, W.K. and Schweisfurth, R., 1976. Manganoxydierende Bakterien. III. Wachstum und Manganoxydation bei Pseudomonas manganoxydans Schw. Z. Allg. Mikrobiol., 16: 587–597.CrossRefGoogle Scholar
  26. Jung, W.K. and Schweisfurth, R., 1979. Manganese oxidation by an intracellular protein of a Pseudomonas species. Z. Allg. Mikrobiol., 19: 107–115.CrossRefGoogle Scholar
  27. Kindle, E.M., 1932. Lacustrine concretions of manganese. Am. J. Sci., 24: 496–504.CrossRefGoogle Scholar
  28. Klaveness, D., 1977. Morphology, distribution and significance of the manganese-accumulating microorganism Metallogenium in lakes. Hydrobiologia, 56: 25–33.CrossRefGoogle Scholar
  29. LaRock, P.A., 1969. The Bacterial Oxidation of Manganese in a Fresh Water Lake. Ph.D. thesis. Rensselaer Polytechnic Institute. Troy, NY.Google Scholar
  30. Leeper, G.W. and Swaby, R.J., 1940. The oxidation of manganous compounds by microorganisms in soil. Soil Sci., 49: 163–169.CrossRefGoogle Scholar
  31. Mann, P.J.G. and Quastel, J.H., 1946. Manganese metabolism in soils. Nature, 158: 154–156CrossRefGoogle Scholar
  32. Mulder, E.G., 1972. Le cycle biologique tellurique et aquatique du fer et du manganese. Rev. Ecol. Biol. Sol, 9: 321–348.Google Scholar
  33. Schmidt, W.D., 1976. Zur Biologie der Eisenbakterien - Siderocapsa geminata–Leptothrix echinata - des Pluhssees. M.S. thesis. Christian-Albrechts Universitaet. Kiel, FRG.Google Scholar
  34. Schweisfurth, R., 1969. Manganoxidierende Pilze. Zentbl. Bakt. ParasitKde. Abt. I. Originale, 212: 486–491.Google Scholar
  35. Schweisfurth, R. and Hehn, G.v., 1972. Licht–und elektronenimkroskopische Untersuchungen sowie Kulturversuche zum Metallogenium-Problem. Zentbl. Bakt. ParasitKde Abt. I. Originale, 220: 357–361.Google Scholar
  36. Soehngen, N.L., 1914. Unwandlung von Manganverbindungen unter dem Einfluss mikrobiologischer Processe. Zentbl. Bakt. ParasitKde, Abt. II, 40: 545–554.Google Scholar
  37. Sokolova-Dubinina, G.A. and Deryugina, Z.P., 1967. Process of iron-manganese concretion formation in Lake Punnus-Yarvi. Mikrobiologiya, 36: 1066–1076. ( Engl. Transi., pp. 892–900 )Google Scholar
  38. Sorokin, Yu. I., 1971. Microflora of iron-manganese concretions form the ocean floor. Mikrobiologiya, 40: 563–566. ( Engl. Transi., pp. 493–495 )Google Scholar
  39. Trimble, R.B. and Ehrlich, H.L., 1968. Bacteriology of manganese nodules. III. Reduction of Mn02 by two strains of nodule bacteria. Appl. Microbiol., 16: 695–702.Google Scholar
  40. Troshanov, E.P., 1968. Iron-and manganese-reducing microorganisms in ore-containing lakes of the Karelian Isthmus. Mikrobiologiya, 37: 934–940. (Engl. Transi., pp. 786–791)Google Scholar
  41. Troshanov, E.P., 1969. Conditions affecting the reduction of iron and manganese bacteria in the ore-bearing lakes of the Karelian Isthmus. Mikrobiologiya, 38: 634–643. (Engl. Transi., pp. 528–535)Google Scholar
  42. Tyler, P.A. and Marshall, K.C., 1967. Microbial oxidation of manganese in hydroelectric pipelines. Antonie van Leeuwenhoek, 33: 171–183.CrossRefGoogle Scholar
  43. Uren, W.C. and Leeper, G.W., 1978. Microbial oxidation of divalent manganese. Soil Biol. Biochem., 10: 85–87.CrossRefGoogle Scholar
  44. Woolfolk, C.A. and Whitely, H.R., 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. I. Stoichiometry with compounds of arsenic, selenium, tellurium, transition and other elements. J. Bacteriol., 84: 647–658.Google Scholar
  45. Zavarzin, G.A., 1962. Symbiotic oxidation of manganese by two species of Pseudomonas. Mikrobiologiya,31: 585–588.(Engl. Transi., pp. 481–482)Google Scholar
  46. Zavarzin, G.A., 1964. Metallogenium symbioticum. Z. Allg. Mikrobiol., 4: 390–395.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • H. L. Ehrlich
    • 1
  1. 1.Department of BiologyRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations