Skip to main content

Nitrogen Diagenesis in Marine Sediments: Evidence for Suboxic and Anoxic Conversion of Organic-N to N2 Gas

  • Chapter
  • 193 Accesses

Abstract

In Fig. 1 are depicted the nitrogen species of known or presumed biochemical importance in each formal valence state, and the known or presumed reaction pathways for the major biochemical nitrogen transformations. Certain intermediate species such as hydroxylamine and nitrous oxide are common to more than one biochemical pathway and a possibility exists for “leakage” of these species between reaction pathways under appropriate environmental conditions. In such cases, analyses of stable subtrates or end products may not provide complete information about the nitrogen biochemistry of the system studied, especially if the analyses do not include all possible substrates and the end products.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1965. Introduction to Soil Microbiology. John Wiley and Sons, NY, 427 pp.

    Google Scholar 

  • Barnes, R.O., 1973. An in situ interstitial water sampler for use in unconsolidated sediments. Deep-Sea Res., 20: 1125–1128.

    CAS  Google Scholar 

  • Barnes, R.O., 1979. Operation of the IPOD In Situ pore water sampler. In: J.C. Sibuet and W.B.F. Ryan, et al. Initial Reports of the Deep Sea Drilling Project, vol. 47, pt 2. U.S. Government Printing Office, Washington, DC, pp. 19–22.

    Google Scholar 

  • Barnes, R.O. and Goldberg, E.D., 1976. Methane production and consumption in anoxic marine sediments. Geology, 4: 297–300.

    Article  CAS  Google Scholar 

  • Barnes, R.O. and Will, B.R., 1980. Physical and diagenetic controls on the concentrations of dissolved Ar, N2 and CH4 in pore fluids from DSDP legs 47 to 57. Geochim. Cosmochim. Acta.,in press.

    Google Scholar 

  • Barnes, R.O., Bertine, K.K. and Goldberg, E.D., 1975. N2:Ar, nitrification and denitrifica-tion in southern California borderland basin sediments. Limnol. Oceanogr., 20: 962–970.

    Article  CAS  Google Scholar 

  • Bender, M.L., Fanning, K.A., Froelich, P.N., Heath, G.R. and Maynard, V., 1977. Inter-stitial nitrate profiles and oxidation of sedimentary organic matter in the eastern equatorial Atlantic. Science, 198: 605–609.

    Article  CAS  Google Scholar 

  • Bender, M.L., Klinkhammer, G., Froelich, P.N., Luedtke, N., Emerson, S., Jahnke, R., Bowser, C. and Setlock, G., 1978. The significance of color banding in eastern equatorial Pacific sediments from MANOP study sites (Abstr.) Trans. Am. Geophys. Un., 59: 1117.

    Google Scholar 

  • Berner, R.A., 1977. Stoichiometric models for nutrient regeneration in anoxic sediments. Limnol. Oceanogr, 22: 781–786.

    Article  CAS  Google Scholar 

  • Bremner, J.M. and Blackmer, A.M., 1979. Mechanisms of nitrous oxide production in soils. This volume, pp. 279–291.

    Google Scholar 

  • Dusenbury, J.H. and Powell, R.E., 1951. Reactions of nitrous acid. II. The reaction of nitrous acid with methylamine. J. Am. Chem. Soc.., 73: 3269–3270.

    Article  CAS  Google Scholar 

  • Froelich, P.N., Klinkhammer, G.P., Bender, M.L., Luedtke, N.A., Heath, G.R., Cullen, D., Dauphin, P., Hammond, D., Blayne, H. and Maynard, V., 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta, 43: 1075–1090.

    Article  CAS  Google Scholar 

  • Fry, B.A., 1955. The Nitrogen Metabolism of Micro-organisms. Methuen and Co., London, 130 pp.

    Google Scholar 

  • Hammond D.E., 1974. Dissolved gases in Cariaco Trench sediments: anaerobic diagenesis. In: I. R. Kaplan (Ed.), Natural Gases in Marine Sediments. Plenum, NY, pp. 71–89.

    Chapter  Google Scholar 

  • Hammond, D.E., Horowitz, R.M. and Broecker, W.S., 1973. Interstitial water studies, leg 15, dissolved gases at site 147. In: B. C. Heezen, I.G. MacGregor, et al. Initial Reports of the Deep Sea Drilling Project, vol. 20. U.S. Government Printing Office, Washington, DC, pp. 765–771.

    Google Scholar 

  • Li, Y.-H. and Gregory, S., 1974. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta, 38: 703–714.

    Article  CAS  Google Scholar 

  • Martens, C.S. and Berner, R.A., 1977. Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases. Limnol. Oceanogr., 22: 10–25.

    Article  CAS  Google Scholar 

  • Moore, G.W. and Gieskes, J.M., 1980. Interaction between sediment and interstitial water near the Japan Trench, DSDP leg 57. In: R. Von Huene, N. Nasu, et al. Initial Reports of the Deep Sea Drilling Project, vol. 57. U.S. Government Printing Office, Washington, DC, in press.

    Google Scholar 

  • Reeburgh, W.S., 1969. Observations of gases in Chesapeake Bay sediments. Limnol. Oceanog 14: 368–375.

    Article  CAS  Google Scholar 

  • Reeburgh, W.S., 1976. Methane consumption in Cariaco Trench waters and sediments. Earth Planet. Sci. Lett, 28: 337–344.

    Article  CAS  Google Scholar 

  • Reeburgh, W.S. and Heggie, D.T., 1974. Depth distribution of gases in shallow water sediments. In: I. R. Kaplan (Ed.), Natural Gases in Marine Sediments. Plenum, NY, pp. 27–45.

    Google Scholar 

  • Sayles, F.L., Mangelsdorf, P.C., Wilson, T.R.S. and Hume, D.N., 1976. A sampler for the in situ collection of marine sedimentary pore waters. Deep-Sea Res., 23: 259–264.

    Google Scholar 

  • Thorstenson, D.C. and Mackenzie, F.T., 1974. Time variability of pore water chemistry in recent carbonate sediments, Devil’s Hole, Harrington Sound, Bermuda. Geochim. Cosmochim. Acta, 38: 1–19.

    Article  CAS  Google Scholar 

  • Warford, A.L. Kosiur, D.R. and Doose, P.R., 1979. Methane production in Santa Barbara Basin sediments. Geomicrobiol. J, 1: 117–137.

    Article  CAS  Google Scholar 

  • Weiss, R.F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res, 17: 721–735.

    CAS  Google Scholar 

  • Williams, D.L., Green, K., van Andel, T.H., Von Herzen, R.P., Dymond, J.R. and Crane, K.,1979. The hydrothermal mounds of the Galapagos Rift: observations with DSRV Alvin and detailed heat flow studies. J. Geophys, Res, 84: 7467–7484.

    Google Scholar 

  • Wise, D.L. and Houghton, G.6 1966. The diffusion coefficients of ten slightly soluble gases in water at 10–60 C. Chem. Eng. Sci. 21: 999–1010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barnes, R.O. (1980). Nitrogen Diagenesis in Marine Sediments: Evidence for Suboxic and Anoxic Conversion of Organic-N to N2 Gas. In: Biogeochemistry of Ancient and Modern Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26582-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26582-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-0-85847-062-0

  • Online ISBN: 978-3-662-26582-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics