Skip to main content

Precambrian Genetics

  • Chapter
  • 189 Accesses

Abstract

Although life is not readily definable, its essence is the multiplication of a certain sort of matter (animate) at the expense of different matter (inanimate) which does not so multiply. Energy is necessary for this and subsequent transformations, but is not considered in the present paper; it has been thoroughly discussed elsewhere (e.g., by Broda, 1971). The central feature of the animate type of matter is the transmission of a particular material order to succeeding entities; this is the genetic aspect.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batschelet, E., Domingo, E. and Weissman, C., 1976. The proportion of revertant and mutant phage in a growing population, as a function of mutation and growth rate. Gene, 1: 27–32.

    Article  CAS  Google Scholar 

  • Biebricher, C.K. and Orgel, L.E., 1973. An RNA that multiplies indefinately with DNA-dependent RNA polymerase: selection from a random copolymer. Proc. Nat. Acad. Sci. U.S.A., 70: 934–938.

    Article  CAS  Google Scholar 

  • Broda, E., 1971. Bioenergetic evolution. In: E. Schoffeniels (Ed.), Biochemical Evolution and Origin of Life, North Holland, Amsterdam, pp. 224–235.

    Google Scholar 

  • Dubinin, N.P., 1964. Problems of Radiation Genetics. Oliver and Boyd, London, pp.

    Google Scholar 

  • Eck, R.V. and Dayhoff, M.O., 1966. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science, 152: 363–366.

    Article  CAS  Google Scholar 

  • Harm, W., Rupert, C.S. and Harm, H., 1971. The study of photoenzymatic repair of UV lesions in DNA by flash photolysis. In: A.C. Geise, (Ed.), Photophysiology, Vol. 6, Academic Press, pp. 279–324.

    Google Scholar 

  • Hayes, W., 1968. The Genetics of Bacteria and Their Viruses, 2nd edn., Blackwell, Oxford, 925 pp.

    Google Scholar 

  • Hopwood, D.A., 1967. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol. Rev., 31: 373–403.

    CAS  Google Scholar 

  • Jacob, F., Brenner, S. and Cuzin, F., 1963. On the regulation of DNA replication in bacteria. Cold Spring Harbor Symp., 28: 329–348.

    Article  CAS  Google Scholar 

  • Kimball, R.F., 1978. The relation of repair phenomena to mutation induction in bacteria. Mutation Res., 55: 85–120.

    Article  CAS  Google Scholar 

  • Kornberg, A., 1965. Synthesis of DNA-like polymers de novo or by reiterative replication. In: V. Bryson and H.J. Vogel (Eds.), Evolving Genes and Proteins, Academic Press, pp. 403–417.

    Google Scholar 

  • Langridge, J., 1969. Mutations conferring quantitative and qualitative increases in ß-galactosidase activity in Escherichia coli. Mol. Gen. Genet., 105: 74–83.

    Article  CAS  Google Scholar 

  • Lesk, A.M., 1969. Why does DNA contain thymine and RNA uracil? J. Theor. Biol., 22: 537–540.

    Article  CAS  Google Scholar 

  • Miller, S.L. and Orgel, L.E., 1974. The Origins of Life on Earth. Prentice-Hall, NJ, 229 pp.

    Google Scholar 

  • Morowitz, H.J., 1966. The minimum size of cells. In: G.E.W. Wolstenholme and M. O’Connor (Eds.), Principles of Biomolecular Organization, Ciba Foundation Symposium, London, pp. 446–462.

    Google Scholar 

  • Park, I.W. and De Ley, J., 1967. Ancestral remnants in the deoxyribonucleic acid from Pseudomonas and Xanthomonas. Antonie van Leeuwenhoek, 33: 1–6.

    Article  CAS  Google Scholar 

  • Penrose, L.S., 1960. Developments in the theory of self-replication. New Biol., 31: 5766.

    Google Scholar 

  • Radman, M., Cordone, L., Krsmanovie-Simie, D. and Errera, M., 1970. Complementary action of recombination and excision in the repair of ultraviolet irradiation damage to DNA. J. Mol. Biol., 49: 203–212.

    Article  CAS  Google Scholar 

  • Rolfing, D.L. and Fox, S.W., 1969. Catalytic activities of thermal polyanhydro-a-amino acids. Advan. Catalysis and Related Subjects, 20: 373–418.

    Article  Google Scholar 

  • Rupp, W.D., Wilde, C.E., Reno, D.L. and Howard-Flanders, P., 1971. Exchanges between DNA strands in ultraviolet-irradiated Escherichia coli. J. Mol. Biol., 61: 24–44.

    Google Scholar 

  • Sagan, C., 1973. Ultraviolet selection pressure on the earliest organisms. J. Theor. Biol., 39: 195–200.

    CAS  Google Scholar 

  • Singer, C.E. and Ames, B.N., 1970. Sunlight ultraviolet and bacterial base ratios. Science, 170: 822–826.

    Article  CAS  Google Scholar 

  • Yoshida, A., 1965. Structural and serological similarity of three dehydrogenases of Bacillus subtilis. Biochim. Biophys. Acta, 105: 70–85.

    Article  CAS  Google Scholar 

  • Zelle, M.R., 1955. Effects of radiation on bacteria. In: A. Hollaender (Ed.), Radiation Biology, McGraw-Hill, NY, pp. 365–430.

    Google Scholar 

  • Zipkas, D. and Riley, M., 1975. Proposal concerning mechanism of evolution of the genome of Escherichia coli. Proc. Nat. Acad. Sci. U.S.A., 72: 1354–1358.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Langridge, J. (1980). Precambrian Genetics. In: Biogeochemistry of Ancient and Modern Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26582-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26582-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-0-85847-062-0

  • Online ISBN: 978-3-662-26582-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics