Skip to main content

Mechanisms of Nitrous Oxide Production in Soils

  • Chapter
Biogeochemistry of Ancient and Modern Environments

Abstract

Recent research by atmospheric scientists has created international concern that increased use of nitrogen fertilizers to aid world food production will increase emission of nitrous oxide (N2O) from soils to the atmosphere via denitrification of fertilizer-derived nitrate and thereby promote destruction of the stratospheric ozone layer protecting the biosphere from biologically harmful ultraviolet radiation from the sun (see Council for Agricultural Science and Technology, 1976; McElroy et al., 1977; Crutzen and Ehhalt, 1977; Liu et al.,1977). This threat has stimulated extensive research on factors affecting N2O emissions from soils and the effects of nitrogen fertilizers on these emissions. The purpose of this article is to report recent research in our laboratory relating to the mechanisms of N2O production in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1977. Introduction to Soil Microbiology, 2nd edn. Wiley, NY, 467 pp.

    Google Scholar 

  • Arnold, P.W., 1954. Losses of nitrous oxide from soil. J. Soil Sci., 5: 116–128.

    Article  CAS  Google Scholar 

  • Balderston, W. L., Sherr, B. and Payne, W.J., 1976. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol., 31: 504–508.

    CAS  Google Scholar 

  • Blackmer, A. M. and Bremner, J. M., 1977a. Nitrification of fertilizer nitrogen in soils as a source of atmospheric N20. Agron. Abstr., p. 146.

    Google Scholar 

  • Blackmer, A. M. and Bremner, J. M., 1977b. Gas chromatographic analysis of soil atmospheres. J. Soil Sci. Soc. Am., 41: 908–912.

    Article  CAS  Google Scholar 

  • Blackmer, A.M. and Bremner, J.M., 1977c. Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biol. Biochem., 9: 73–77.

    Article  CAS  Google Scholar 

  • Blackmer, A.M. and Bremner, J.M., 1978a. Determination of nitrous oxide in air. Agron. Abstr., p. 137.

    Google Scholar 

  • Blackmer, A.M. and Bremner, J.M., 1978b. Inhibitory effect of nitrate on reduction of N20 to N2 by soil microorganisms. Soil Biol. Biochem., 10: 187–191.

    Article  CAS  Google Scholar 

  • Bremner, J.M., 1978. Effects of soil processes on the atmospheric concentration of nitrous oxide. In: D. R. Nielsen and J. G. McDonald (Eds.), Nitrogen in the Environment, Vol. 1. Academic Press, NY, pp. 477–491.

    Google Scholar 

  • Bremner, J.M. and Blackmer, A.M., 1978. Nitrous oxide: Emission from soils during nitrification of fertilizer nitrogen. Science, 199: 295–296.

    Article  CAS  Google Scholar 

  • Bremner, J.M. and Blackmer, A.M., 1979. Natural and fertilizer-induced emissions of nitrous oxide from soils. Progress report to the Division of Environmental Biology of the U.S. National Science Foundation for grant number ENV77–23835.

    Google Scholar 

  • Bremner, J.M., Blackmer, A.M. and Minami, K., 1978. Effects of organic amendments on fluxes of nitrous oxide between soils and air. Agron. Abstr., p. 21.

    Google Scholar 

  • Bremner, J.M. and Nelson, D.W., 1968. Chemical decomposition of nitrite in soils. Trans. 9th Int. Congr. Soil Sci., Adelaide, 2: 495–503.

    CAS  Google Scholar 

  • Bremner, J.M. and Shaw, K., 1958. Denitrification in soil. I. Methods of investigation. J. Agric. Sci., 51: 22–39.

    Article  CAS  Google Scholar 

  • Bundy, L.G. and Bremner, J.M., 1973. Inhibition of nitrification in soils. Proc. Soil Sci. Soc. Am., 37: 396–398.

    Article  CAS  Google Scholar 

  • Cihajek, L.J., 1979. Sorption of Sulfur Dioxide and Hydrogen Sulfide by Soils. Ph.D. Thesis, Iowa State University.

    Google Scholar 

  • Cohen, Y., and Gordon, L.I., 1978. Nitrous oxide in the oxygen minimum of the eastern tropical North Pacific: evidence for its consumption during denitrification and possible mechanisms for its production. Deep-Sea Res., 25: 509–524.

    Article  CAS  Google Scholar 

  • Council for Agricultural Science and Technology, 1976. Effect of increased nitrogen fixation on stratospheric ozone. Report 53. Iowa State University, Ames.

    Google Scholar 

  • Corbet, A.S., 1935. The formation of hyponitrous acid as an intermediate compound in the biological or photochemical oxidation of ammonia to nitrous acid. II. Microbiological oxidation. Biochem. J., 29: 1086–1096.

    CAS  Google Scholar 

  • Crutzen, P.J., and Ehhalt, D., 1977. Effects of nitrogen fertilizers and combustion on the stratospheric ozone layer. Ambio, 6: 112–117.

    CAS  Google Scholar 

  • Elkins, J.W., Wofsy, S.C., McElroy, M.B., Kolb, C.E. and Kaplan, W.A., 1978. Aquatic sources and sinks for nitrous oxide. Nature, 275: 602–606.

    Article  CAS  Google Scholar 

  • Focht, D.D., 1974. The effect of temperature, pH, and aeration on the production of nitrous oxide and gaseous nitrogen–a zero-order kinetic model. Soil Sci., 118: 173–179.

    Article  CAS  Google Scholar 

  • Flühler, H., Ardakani, M.S., Szuskiewicz, T.E. and Stolzy, L.H., 1976a. Field-measured nitrous oxide concentrations, redox potentials, oxygen diffusion rates, and oxygen partial pressures in relation to denitrification. Soil Sci., 122: 107–114.

    Article  Google Scholar 

  • Flühler, H., Stolzy, L.J. and Ardakani, M.S., 1976b. A statistical approach to define soil aeration in respect to denitrification. Soil Sci., 122: 115–123.

    Article  Google Scholar 

  • Freney, J.R., Denmead, O.T. and Simpson, J.R., 1978. Soil as a source or sink for atmospheric nitrous oxide. Nature, 273: 530–532.

    Article  CAS  Google Scholar 

  • Freney, J.R., Denmead, 0.T. and Simpson, J.R., 1979. Nitrous oxide emission from soils at low moisture contents. Soil Biol. Biochem., 11: 167–173.

    CAS  Google Scholar 

  • Goring, C.A.I., 1962a. Control of nitrification by 2-chloro-6-(trichloromethyl)pyridine. Soil Sci., 93: 211–218.

    Article  CAS  Google Scholar 

  • Goring, C.A.I., 1962b. Control of nitrification of ammonium fertilizers and urea by 2-chloro-6-(trichloromethyl)pyridine. Soil Sci., 93: 431–439.

    Article  Google Scholar 

  • Hahn, J. and Junge, C., 1977. Atmospheric nitrous oxide: A critical review. Naturforsch., 32a: 190–214.

    Google Scholar 

  • Henninger, N.M. and Bollag, J.M., 1976. Effect of chemicals used as nitrification inhibitors on the denitrification process. Can. J. Microbiol., 22: 668–672.

    Article  CAS  Google Scholar 

  • Hynes, R.K. and Knowles, R., 1978. Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea. FEMS Microbiol. Lett., 4: 319–321.

    Article  CAS  Google Scholar 

  • Klemedtsson, L., Svensson, B.H., Lindberg, T. and Rosswall, T., 1977. The use of acetylene inhibition of nitrous oxide reductase in quantifying denitrification in soils. Swedish J. Agric. Res., 7: 179–185.

    CAS  Google Scholar 

  • Liu, S.C., Cicerone, R.J., Donahue, T.M. and Chameides, W.L., 1977. Sources and sinks of atmospheric N20 and the possible ozone reduction due to industrial fixed nitrogen fertilizers. Tellus, 291: 251–263.

    Google Scholar 

  • Mann, P.J.G. and Quastel, J.H., 1946. Manganese metabolism in soils. Nature, 158: 154–156 (for erratum, see p. 662).

    Google Scholar 

  • McElroy, M:B., Wofsy, S.C. and Yung, Y.L., 1977. The nitrogen cycle: Perturbations due to man and their impact on atmospheric N20 and 03. Phil. Trans. R. Soc. London, 277B: 159–181.

    Google Scholar 

  • Minami, K., Blackmer, A.M. and Bremner, J.M., 1978. Emission of nitrous oxide from well-aerated soils. Agron. Abstr., p. 31.

    Google Scholar 

  • Nelson, D.W., 1978. Transformations of hydroxylamine in soils. Proc. Indiana Acad. Sci., 87: 409–413.

    Google Scholar 

  • Nelson, D.W. and Bremner, J.M., 1970. Gaseous products of nitrite decomposition in soils. Soil Biol. Biochem., 2: 203–215.

    Article  CAS  Google Scholar 

  • Nömmik, H., 1956. Investigations on denitrification in soils. Acta Agric. Scand., 6: 195–228.

    Article  Google Scholar 

  • Ritchie, G.A.F. and Nicholas, D.J.D., 1972. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. Biochem. J., 125: 1181–1191.

    Google Scholar 

  • Ritchie, G.A.F. and Nicholas, D.J.D., 1974. The partial characterization of purified nitrite reductase and hydroxylamine oxidase from Nitrosomonas europaea. Biochem. J., 138: 471–480.

    CAS  Google Scholar 

  • Shattuck, G.E. Jr. and Alexander, M., 1963. A differential inhibitor of nitrifying microorganisms. Proc. Soil. Sci. Soc., Am., 27: 600–601.

    CAS  Google Scholar 

  • Smith, M.S., Firestone, M.K. and Tiedje, J.M., 1978. The acetylene inhibition method for short-term measurement of soil denitrification and its evaluation using nitrogen-13. J. Soil Sci. Soc. Am., 42: 611–615.

    Article  CAS  Google Scholar 

  • Verstraete, W. and Alexander, M., 1973. Heterocyclic nitrification in samples of natural ecosystems. Environ. Sci. Technol., 7: 39–42.

    Article  CAS  Google Scholar 

  • Vine, H., 1962. Some measurements of release and fixation of nitrogen in soil of natural structure. Plant Soil, 17: 109–130.

    Article  CAS  Google Scholar 

  • Walter, H.M., Keeney, D.R. and Fillery, I.R., 1979. Inhibition of nitrification by acetylene. J. Soil Sci. Soc. Am., 43: 195–196.

    Article  CAS  Google Scholar 

  • Wijler, J. and Delwiche, C.C., 1954. Investigation on the denitrifying process in soil. Plant Soil, 5: 155–169.

    Article  CAS  Google Scholar 

  • Yoshida, T. and Alexander, M., 1970. Nitrous oxide formation by Nitrosomonas europaea and heterotrophic microorganisms. Proc. Soil Sci. Soc. Am., 34: 880–882.

    Article  CAS  Google Scholar 

  • Yoshida, T. and Alexander, M., 1971. Hydroxylamine oxidation by Nitrosomonas europaea. Soil Sci., 111: 307–312.

    Article  CAS  Google Scholar 

  • Yoshinari, T. and Knowles, R., 1976. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Commun., 69: 705–710.

    Article  CAS  Google Scholar 

  • Yoshinari, T., Hynes, R. and Knowles, R., 1977. Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil. Soil Biol. Biochem., 9: 177–183

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bremner, J.M., Blackmer, A.M. (1980). Mechanisms of Nitrous Oxide Production in Soils. In: Biogeochemistry of Ancient and Modern Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26582-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26582-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-0-85847-062-0

  • Online ISBN: 978-3-662-26582-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics