Advertisement

Abstract

Biogeochemical systems are a product of the interacting evolutions of biosphere, atmosphere, hydrosphere, and lithosphere. They began with the appearance of life on Earth. But the appearance of objects we would unhesitatingly pronounce to be living is itself presumably only the end stage of a transitional process whose nature and antecedents are important parts of the story. If we include prebiotic chemistry, the process may have started in the space between the stars. That follows from the discovery by X-ray astronomers of interstellar hydrogen cyanide, formaldehyde, and the other important polyatomic organic molecules listed in Table 1.

Keywords

Solar Wind Solar Nebula Banded Iron Formation Sedimentary Sulfate Biogeochemical Consequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, R.L., 1968, A model for the evolution of strontium and lead isotopes in a dynamic earth: Rev. Geophys., 6: 175–199.CrossRefGoogle Scholar
  2. Barton, J.M., Jr., Fripp, R.E.P. and Ryan, B., 1977. Rb/Sr ages and geological setting of ancient dykes in the Sand River area, Limpopo Mobile Belt, South Africa. Nature, 267: 487–490.CrossRefGoogle Scholar
  3. Becker, R.H. and Clayton, R.N., 1972. Carbon isotopic evidence for the origin of a banded iron formation in western Australia. Geochim. Cosmochim. Acta., 36: 577–595.CrossRefGoogle Scholar
  4. Berkner, L.V. and Marshall, L.C., 1965. History of major atmospheric components. Proc. Natl. Acad. Sci. U.S.A., 53: 1215–1225.CrossRefGoogle Scholar
  5. Bogorad, L., 1966. The biosynthesis of chlorophylls. In: L.P. Vernon and G.R. Seely (Eds.), The Chlorophylls, Academic Press, NY, pp. 481–510.Google Scholar
  6. Bogorad, L., 1976. Chlorophyll biosynthesis. In: T.W. Goodwin (Ed.), Chemistry and Biochemistry of Plant Pigments, V. 1, Academic Press, NY, pp. 64–148.Google Scholar
  7. Bridgwater, D., Escher, A., Jackson, G.D., Taylor, F.C. and Windley, B.F., 1973. Development of the Precambrian Shield in West Greenland, Labrador, and Baffin Island. Am. Assoc. Petr. Geol. Mem. 19: 99–116.Google Scholar
  8. Bridgwater, D., McGregor, V.R. and Myers, J.S., 1974. A horizontal tectonic regime in the Archean of Greenland and its implications for early crustal thickening. Precambr. Res., 1: 179–197.CrossRefGoogle Scholar
  9. Brinkman, R.T., 1969. Dissociation of water vapour and evolution of oxygen in the terrestrial atmosphere. J. Geophys. Res., 74: 5355–5367.CrossRefGoogle Scholar
  10. Broecker, W.S., 1970. A boundary condition on evolution of atmospheric oxygen. J. Geophys. Res., 75: 3553–3557.CrossRefGoogle Scholar
  11. Button, A., 1980. Early Proterozoic Weathering Profile on the 2200 m.y. Old Hekpoort Basalt, Pretoria Group, South Africa: Preliminary Results. Univ. Witwatersrand, Econ. Geol. Research Unit, Information Circular, in press.Google Scholar
  12. Calvin, M., 1965. Chemical evolution. Proc. R. Soc., A 288: 441–446.CrossRefGoogle Scholar
  13. Cameron, A.G.W., 1973, Accumulation processes in the primitive solar nebula. Icarus, 18: 407–450.CrossRefGoogle Scholar
  14. Cameron, A.G.W., 1977. The primitive solar accretion disk (sic) and the formation of the planets: Proc. NATO Adv. Study Inst. on the Origin of the Solar System, Newcastle-upon-Tyne, pp. 49–74.Google Scholar
  15. Cameron, A.G.W. and Truron, J.W., 1977. The supernova trigger for the formation of the solar system: Icarus, 30: 447–461.CrossRefGoogle Scholar
  16. Carver, J.H., 1980. Oxygen and ozone evolution in palaeo-atmospheres. This volume PPGoogle Scholar
  17. Chase, C.G. and Perry, E.C., Jr., 1972. The Oceans: growth and oxygen isotope evolution. Science, 177: 992–994.CrossRefGoogle Scholar
  18. Cloud, P., 1965. Significance of the Gunflint (Precambrian) microflora. Science, 148: 27–35.CrossRefGoogle Scholar
  19. Cloud, P., 1968. Pre-Metazoan evolution and the origins of the Metazoa. In: E.T. Drake (Ed.), Evolution and Environment, Yale Univ. Press, pp. 1–72.Google Scholar
  20. Cloud, P., 1973. Paleoecological significance of the banded iron-formation. Econ. Geol., 68: 1135–1143.CrossRefGoogle Scholar
  21. Cloud, P., 1974. Evolution of ecosystems. Am. Sci., 62: 54–66.Google Scholar
  22. Cloud, P., 1976a. Beginnings of biospheric evolution and their biogeochemícal consequences. Paleobiol., 2: 351–387.Google Scholar
  23. Cloud, P., 1976b. Major features of crustal evolution. Geol Soc. S. Afr., Annexure to v. 79 (Alex L. DuToit Memorial Lecture No. 14), 33 pp.Google Scholar
  24. Cloud, P., 1978. Cosmos, Earth, and Man. Yale Press, 372 p.Google Scholar
  25. Cloud, P. and Gibor, A., 1970. The oxygen cycle. Sci. Am., Offprint No. 1192, 12 pp.Google Scholar
  26. Demoulin, V., 1979. Early Precambrian oxygen. Nature, 278: 479.CrossRefGoogle Scholar
  27. Dimroth, E., 1968. The evolution of the central segment of the Labrador Geosyncline, Part I: Stratigraphy, facies and paleogeography. Neues Jb. Geol. Paläont. Abh., 132: 22–24.Google Scholar
  28. Dimroth, E., 1970. Evolution of the Labrador Geosyncline. Bull. Geol. Soc. Am., 81: 2717–2742.CrossRefGoogle Scholar
  29. Fanale, F.P., 1971. A case for catastrophic early degassing of the earth. Chem. Geol., 8: 79–105.CrossRefGoogle Scholar
  30. Ferris, J.P., Joshi, P.C., Edelson, E.H. and Lawless, J.C., 1978. HCN: A plausible source of purines, pyrimidines and amino acids on the primitive earth. J. Mol. Evol., II: 293–311.CrossRefGoogle Scholar
  31. Fox, S.W. and Yuyama, S., 1973. Abiotic production of primitive protein and formed micro-particles, Ann. New York Acad. Sci., 108: 487–494.CrossRefGoogle Scholar
  32. Garrison, W.M., Hamilton, J.G., Morrison, D.C., Benson, A.A. and Calvin, M., 1951. Reduction of carbon dioxide in aqueous solutions by ionizing radiations. Science, 114: 416–418.CrossRefGoogle Scholar
  33. Gilbert, G.K., 1886. The inculcation of scientific method by example. Am. J. Sci., Ser. 3, 31: 284–299.Google Scholar
  34. Goldich, S.S., 1973. Ages of Precambrian banded iron-formations. Econ. Geol., 68: 1126 1134.Google Scholar
  35. Holland, H.D., 1978, The Chemistry of the Atmosphere and Oceans. Wiley-Interscience, NY, 351 pp.Google Scholar
  36. Hoyle, F. and Wickramasinghe, C., 1979, Lifecloud: The Origin of Life in the Universe. Harper and Row, 189 pp.Google Scholar
  37. Hunten, D.M., 1973. The escape of light gases from panetary atmospheres. J. Atmos. Sci., 30: 1481–1494.CrossRefGoogle Scholar
  38. Hunten, D.M. and Strobel, D.T., 1973. Production and escape of terrestrial hydrogen. J. Atmos. Sci., 31: 305–317.CrossRefGoogle Scholar
  39. Jacobs, J.A., 1961. Some aspects of the thermal history of the earth. Geophys. J., 4: 267–275.CrossRefGoogle Scholar
  40. James, H.L. and Sims, P.K. (Eds.), 1973. Pre-Cambrian iron-formations of the world. Econ. Geol., 68: 913–1179.Google Scholar
  41. Lambert, I.B., Donnelly, T.H., Dunlop, J.S.R. and Groves, D.I., 1978. Stable isotope compositions of early Archean sulphate deposits of probable evaporitic and volcanogenic origins: Nature, 276: 808–810.Google Scholar
  42. Lee, T., Papanastassiou, D.A. and Wasserburg, G.J., 1976. Demonstration of 26Mg excess in Allende and evidence for 26A1: Geophys. Res. Lett., 3: 109–112.CrossRefGoogle Scholar
  43. Lee, T., Papanastassiou, D.A. and Wasserburg, G.S., 1978. Calcium isotopic anomalies in the Allende Meteorite. Astrophys. J., 220, L21 - L25.CrossRefGoogle Scholar
  44. Macdonald, G.J.F., 1959. Calculations on the thermal history of the earth. J. Geophys. Res., 65: 2173–2190.CrossRefGoogle Scholar
  45. Macgregor, A.M., 1927. The problem of the Precambrian atmosphere. South Afr. J. Sci., 24: 155–172.Google Scholar
  46. Mastenbrook, H.J., 1971. The variability of water vapor in the stratosphere. J. Atmos. Sci., 28: 1495–1501.CrossRefGoogle Scholar
  47. Miller, S.L., 1953. A production of amino acids under primitive earth conditions. Science, 117: 528–529.CrossRefGoogle Scholar
  48. Miller, S.L. and Orgel, L.E., 1974. The Origins of Life on Earth. Prentice Hall Inc., NY, 229 pp.Google Scholar
  49. Nagy, L.A., 1974. Transvaal stromatolite: First evidence for the diversification of cells about 2.2 x 109 years ago. Science, 183: 514–516.CrossRefGoogle Scholar
  50. Nagy, L.A., 1978. New filamentous and cystous microfossils, %2,300 m.y. old from the Transvaal Sequence. J. Paleontol., 52: 141–154.Google Scholar
  51. Perry, E.C., Monster, J. and Reimer, T., 1971. Sulfur isotopes in Swaziland system barites and the evolution of the earth’s atmosphere. Science, 171: 1015–1016.CrossRefGoogle Scholar
  52. Pirie, N.W., 1953. Ideas and assumptions about the origin of life. Discovery, 14: 238–242.Google Scholar
  53. Oren,, A., Padan, E. and Avron, M., 1977. Quantum yields for oxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Proc. Natl. Acad. Sci. U.S.A., 74: 2152–2156.CrossRefGoogle Scholar
  54. Ringwood, A.E., 1966. The chemical composition and origin of the earth. In: P.M. Hurley (Ed.), Advances in Earth Science, MIT Press, pp. 287–356.Google Scholar
  55. Ringwood, A.E., 1975. Composition and Petrology of the Earth’s Mantle. McGraw Hill Book Co., NY, 618 pp.Google Scholar
  56. Ringwood, A.E., 1977. Composition of the Core and Implications for Origin of the Earth. Australian National University, Research School of Earth Sciences, Publ. No. 1227, 45 pp.Google Scholar
  57. Rubey, W.W., 1951. Geologic history of sea water. Bull. Geol. Soc. Am., 62: 1111–1148.CrossRefGoogle Scholar
  58. Russell, H.N. and Menzel, D.W., 1933. The terrestrial abundance of the permanent gases. Proc. Natl. Acad. Sci., U.S.A., 19: 997–1001.CrossRefGoogle Scholar
  59. Sagan, C. and Mullen, G., 1972. Earth and Mars: evolution of atmospheres and surface temperatures. Science, 177: 52–56.CrossRefGoogle Scholar
  60. Schidlowski, M. and Eichman, R., 1977. Evolution of the terrestrial oxygen budget. In: C. Ponnamperuma (Ed.), Chemical Evolution of the Early Precambrian, Academic Press, NY, pp. 87–89.Google Scholar
  61. Schidlowski, M., Appel, P.W.U., Eichmann, R. and Junge, C.E., 1979. Carbon isotope geochemistry of the 3.7 x 109-yr-old Isua sediments, West Greenland: implications for the Archean carbon and oxygen cycles. Geochim. Cosmochim. Acta, 43: 189–199.CrossRefGoogle Scholar
  62. Schopf, J.W., 1978. The evolution of the earliest cells. Sci. Am., 239: 111–120, 126–134.Google Scholar
  63. Schramm, D.N. and Clayton, R.N., 1978. Did a supernova trigger the formation of the solar system? Sci. Am., 239: 124–139.CrossRefGoogle Scholar
  64. Shimizu, M., 1979. An evolutionary model of the terrestrial atmosphere from a comparative planetological view. Precambr. Res., 9: 311–324.CrossRefGoogle Scholar
  65. Siever, R., 1977. Early Precambrian weathering and sedimentation: an impressionistic view. In: C. Ponnamperuma (Ed.), Chemical Evolution of the Early Precambrian, Academic press, NY, pp. 13–24.Google Scholar
  66. Towe, K.M., 1978. Early Precambrian oxygen: a case against photosynthesis. Nature, 274: 657–661.CrossRefGoogle Scholar
  67. Towe, K.M., 1979. Early Precambrian oxygen: Towe replies. Nature, 278: 479.Google Scholar
  68. Turekian, K.K. and Clark, S.P., 1969. Inhomogeneous accumulation of the earth from the primitive solar nebula. Earth Planet. Sci. Lett., 6: 346–348.Google Scholar
  69. Urey, H.C., 1959. The atmospheres of the planets. In: S. Fugge (Ed.), Handbuch der Physik. Vol. 52, Springer Verlag, Berlin, pp. 363–418.Google Scholar
  70. von Brunn, V. and Mason, T.R., 1977. 3-Gyr-old stromatolites from South Africa. Nature, 266: 47–49.Google Scholar
  71. Walker, J.C.G., 1976. Implications for atmospheric evolution of the inhomogeneous accretion model of the origin of Earth. In: B.F. Windley (Ed.), The Early History of the Earth. Wiley-Interscience, NY, pp. 537–546.Google Scholar
  72. Walker, J.C.G., 1977. Evolution of the Atmosphere. MacMillan Publishing Co., Inc. 318 pp.Google Scholar
  73. Walker, R.N., Muir, M.D., Diver, W.L., Williams, N. and Wilkins, N., 1977, Evidence of major sulphate evaporite deposits in the Proterozoic McArthur Group, Northern Territory, Australia. Nature, 265: 526–529.CrossRefGoogle Scholar
  74. Weisskopf, V.F., 1979, Contemporary frontiers in physics. Science, 230: 240–244.CrossRefGoogle Scholar
  75. Wetherill, G.W., 1971. The beginning of continental evolution. In: A. R. Ritsema (Ed.), The Upper Mantle. Tectonophysics, 13: 31–45.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • Preston Cloud
    • 1
  1. 1.Mount Holyoke CollegeU.S. Geological Survey and University of CaliforniaSouth HadleyUSA

Personalised recommendations