Skip to main content

Coordinate Control of Retinal Neovascularization

  • Chapter
Cellular Communication During Ocular Development

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

  • 28 Accesses

Abstract

Angiogenesis refers to the development of new blood vessels. Such a development can occur as a response to either normal physiological events or abnormal pathological conditions. Examples of normal angiogenic processes include the vascular development which occurs during embryogenesis (Sabin, 1920; Wagner, 1980) and wound healing (Clark and Clark, 1932; Cliff, 1963; Schoefl, 1963). The precisely controlled vascularization which occurs during embryogenesis is crucial to proper fetal development, not only in providing for nutrient and waste exchange within rapidly developing tissues, but also, perhaps, in influencing the development of surrounding tissues (Goudie et al., 1980). Using histological techniques, embryologists have documented the transformation of embryonic mesodermal cells into blood islands and angioblasts (Sabin, 1920; Wagner, 1980). The ability to form new vessels is not lost with the cessation of embryogenesis. Indeed, if influenced by an appropriate stimulus, an angiogenic response can be induced in most post-embryonic vascularized tissues. During the process of wound healing, for example, damaged tissue, including vascular tissue, is either repaired or replaced (Cliff, 1963; Schoefl, 1963). However, unlike the mesodermal-derived vascularization events of early embryogenesis, most neovascularization events of fully developed tissues occur as extensions of nearby, pre-existing blood vessel networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashton, N., B. Ward, G. Serpell. 1953. Role of oxygen in the genesis of retrolental fibroplasia: Preliminary report. Br. J. Ophthalmol. 37; 513–520.

    Google Scholar 

  • Ashton, N., B. Ward, G. Serpell. 1954. Effect of oxygen on developing retina vessels with particular reference to the problem of retrolental fibroplasia. Br. J. Ophthalmol. 38; 397–430.

    Google Scholar 

  • Auerbach, R. 1981. Angiogenesis-inducing factors: A review. Lymphokines, 4; Academic Press, 69–88.

    Google Scholar 

  • Ausprunk, D.H., D.R. Knighton, J. Folkman. 1975. Vascularization of normal and neoplastic tissues grafted to the chick chorioallantois. Am. J. Pathol. 79; 597–628.

    Google Scholar 

  • Ausprunk, D.H., J. Folkman. 1977. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvascular Res. 14; 53–65.

    Article  CAS  Google Scholar 

  • Brem, S., H. Brem, J. Folkman, D. Finkelstein, A. Patz. 1976. Prolonged tumor dormancy by prevention of vascularization in the vitreous. Cancer Res. 36; 2807–2812.

    PubMed  CAS  Google Scholar 

  • Brem, S., I. Preis, R. Langer, H. Brem, J. Folkman, A. Patz. 1977. Inhibition of neovascularization by an extract derived from vitreous. Am. J. Ophthalmol. 84; 323–328.

    Google Scholar 

  • Chen, C-H., A. Patz. 1976. Components of vitreous-soluble proteins: Effect of hyperoxia and age, Investig. Ophthalmol. 15; 228–232.

    Google Scholar 

  • Clark, E.R., E.L. Clark. 1932. Observations on living preformed blood vessels as seen in transparent chambers inserted in the rabbit’s ear. Am. J. Anat. 49; 441–477.

    Google Scholar 

  • Cliff, W.J. 1963. Observations on healing tissue: a combined light and electron microscopic study. Phil. Trans. R. Soc. pond. B. 246; 305–323.

    Google Scholar 

  • D’Amore, P.A., B.M. Glaser, S.K. Brunson, an A.H. Fenselau. 1981. Angiogenic activity from bovine retina: Partial purification and characterization. Proc. Natl. Acad. Sci. USA. 78; 3068–3072.

    Google Scholar 

  • Duke-Elder, S. 1963. In “System of Ophthalmology III”, part 1, C. V. Mosby Co., St. Louis. 141–153.

    Google Scholar 

  • Fenselau, A., R.J. Mello. 1976. Growth stimulation of cultured endothelial cells by tumor cell homogenates. Cancer Res. 36; 3269–3273.

    PubMed  CAS  Google Scholar 

  • Fenselau, A., S. Watt, R.J. Mello. 1981. Tumor angiogenic factor: Purification from the Walker 256 rat tumor. J. Biol. Chem, 256; 9605–9611.

    Google Scholar 

  • Flower, R.W., D.A. Blake, S.D. Wajer, P.G. Egner, D.S. McLeod, S.M. Pitts. 1981. Retrolental fibroplasia: Evidence for a role of the prostaglandin cascade in the pathogenesis of oxygen-induced retinopathy in the newborn beagle. Pediatr. Res. 15; 1293–1302.

    Google Scholar 

  • Folkman, J. 1972. Angiogenesis in psoriasis: Therapeutic implications. J. Invest. Dermatol. 59; 40–43.

    Google Scholar 

  • Folkman, J., R.S. Cotran. 1976. Relation of vascular proliferation to tumor growth. Int. Rev. Exp. Pathol. 16; 207–248.

    Google Scholar 

  • Fournier, G.A., G.A. Lutty, S. Watt, A. Fenselau, A. Patz. 1981. A corneal micropocket assay for angiogenesis in the rat eye. Invest. Ophthalmol. Vis. Sci. 21; 351–354.

    Google Scholar 

  • Gimbrone, M.A., R.S. Cotran, S.B. Leapman, J. Folkman. 1974. Tumor growth and neovascularization: An experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52; 413–428.

    Google Scholar 

  • Glaser, B.M., P.A. D’Amore, R.G. Michels, A. Patz, A. Fenselau. 198Oa. Demonstration of vasoproliferative activity from mammalian retina. J. Cell Biol. 84; 298–304.

    Google Scholar 

  • Glaser, B.M., P.A. D’Amore, H. Seppa, S. Seppa, E. Schiffmann. 1980b. Adult.tissues contain chemoattractants from vascular endothelial cells. Nature 288; 483–484.

    Article  PubMed  CAS  Google Scholar 

  • Goudie, R.B., J.C. Spence, R.J. Scothorne. 1980. Do vascular clones determine developmental patterns? Lancet 1980-I. 570–572.

    Google Scholar 

  • Greenblatt, M., P. Shubik. 1968. Tumor angiogenesis: Transfilter diffusion studies in the hamster by the transparent chamber technique. J. Natl. Cancer Inst. 41; 111–124.

    Google Scholar 

  • Henkind, P. 1978. Ocular neovascularization. The Krill Memorial Lecture. Am. J. Ophthalmol. 85; 287–301.

    Google Scholar 

  • Jack, R.L. 1972. Regression of the hyaloid vascular system. An ultrastructural analysis. Am. J. Ophthalmol. 74; 261–272.

    Google Scholar 

  • Langer, R., J. Folkman. 1976. Polymers for the sustained release of proteins and other macromolecules. Nature (London) 263; 797–800.

    Article  CAS  Google Scholar 

  • Lutty, G.A., B.M. Glaser, A. Patz. 1981a. Inhibition of vascular endothelial cell chemotaxis by extracts of adult bovine vitreous. Invest. Ophthalmol. Vis. Sci. Suppl. 20; 141.

    Google Scholar 

  • Lutty, G.A., D.C. Thompson, J.Y. Gallop, R.J. Mello, A. Patz, A. Fenselau. 1981b. Vitreous: An inhibitor of retinal extract-induced neovascularization. Submitted for publication.

    Google Scholar 

  • McAuslan, B.R., H. Hoffman. 1979. Endothelium stimulating factor from Walker carcinoma cells. Relation to tumor angiogenic factor. Exp. Cell Res. 119; 181–190.

    Google Scholar 

  • Mello, R.J. 1977. Vascular endothelial cell culture: Use in studies of an endothelial cell mitogen derived from the Walker 256 rat carcinoma. Doctoral dissertation. The Johns Hopkins University School of Medicine, Baltimore, MD.

    Google Scholar 

  • Michaelson, I.C. 1948. The mode of development of the vascular system of the retina, with some observations on its significance for certain retinal diseases. Trans. Ophthalmol. Soc. UK. 68; 137–180.

    Google Scholar 

  • Murray, P.D.F. 1932. The development in vitro of the blood of the early chick embryo. Proc. R. Soc. B. III; 497–521.

    Google Scholar 

  • Muthukkaruppan, V.R., R. Auerbach. 1979. Angiogenesis in the mouse cornea. Science. 205; 1416–1418.

    Article  PubMed  CAS  Google Scholar 

  • Patz, A. 1980. I. Studies on retinal neovascularization. Friedenwald Lecture. Invest. Ophthalmol. Vis Sci. 19; 1133–1138.

    Google Scholar 

  • Patz, A., A. Eastham, D. Higgenbotham, T. Kleh. 1953. Oxygen studies in retrolental fibroplasia: II. Production of the microscopic changes of retrolental fibroplasia in experimental animals. Am. J. Ophthalmol. 36; 1511–1522.

    Google Scholar 

  • Sabin, F.R. 1917. Origin and development of the primitive vessels of the chick and pig. Carnegie Inst. Contrib. Embryol. 6; 61–124.

    Google Scholar 

  • Sabin, F.R. 1920. Studies on the origin of blood vessels and of red corpuscles as seen on the living blastoderm of the chick during the second day of incubation. Carnegie Inst. Contrib. Embryol. No. 36. 9; 213–262.

    Google Scholar 

  • Schoefl, G.L. 1963. Studies on inflammation. III. Growing capillaries: Their structure and permeability. Virchow Arch. Pathol Anat 337; 97–141.

    Google Scholar 

  • Wagner, R.C. 1980. Endothelial cell embryology and growth. In “Adv. Microcirc”. 9; ( Karger, Basel ) 45–75.

    Google Scholar 

  • Weiss, J.B., R.A. Brown, S. Kumar, P. Phillips. 1979. An angiogenic factor isolated from tumors: A potent low-molecular-weight compound. Br. J. Cancer 40; 493–496.

    Google Scholar 

  • Wise, G.W. 1956. Retinal neovascularization. Trans. Am. Ophthalmol. Soc. 54; 729–826.

    Google Scholar 

  • Yamagami, I. 1970. Electronmicroscopic study on the cornea. I. The mechanism of experimental new vessel formation. Jap. J. Ophthalmol. 14; 41–58.

    Google Scholar 

  • Yanoff, M. 1969. Ocular pathology of diabetes mellitus. Am. J. Ophthalmol. 67; 21–38.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mello, R.J. (1982). Coordinate Control of Retinal Neovascularization. In: Sheffield, J.B., Hilfer, S.R. (eds) Cellular Communication During Ocular Development. Cell and Developmental Biology of the Eye. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26557-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26557-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-90773-2

  • Online ISBN: 978-3-662-26557-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics