Skip to main content

Regulation of Lens Morphogenesis and Cataract Pathogenesis by Pituitary-dependent, Insulin-like Mitogens

  • Chapter
Cellular Communication During Ocular Development

Abstract

When we started the work to be described, we were not primarily concerned with communication or development in the strictest sense of these terms but with the stimulation of hyperplasia following mechanical wounding of the lens epithelium. Studies from one of our laboratories (Rothstein et al., 1964) as well as those of C.V. Harding, (Harding et al., 1959; Rothstein and Harding, 1962) and N. Rafferty (1963, 1965) showed that mechanical trauma results in the proliferation of lens epithelial cells in teleost, amphibian and mammalian organisms. Unknown to us at the time, similar findings had been reported in the late 19th. century by Th. Leber (1878) and later by Paul Knapp (1900 a, b). In 1882, the immortal Jacob Henle said, “Doch scheint es mir der Mühe werth, auf ein bisher unbeachtetes Organ die Aufmerksamkeit zu lenken, an welchem die Vermehrung der Zellen auf dem Wege der Karyokinese vor sich geht und an welchem sie vielleicht, bei richtiger Wahl des Zeitpunktes, mit grosserer Sicherheit verfolgt werden kann, als an manchen der bisher durchforschten Organe und Gewebe.”. (It certainly seems worth the effort to turn attention to a previously neglected organ, where cell proliferation is achieved by karyokinesis which process could be followed more reliably by an appropriate choice of experimental intervals than in many organs and tissues that have, until now, been exhaustively investigated.) (Figure 1)

“Then there is that little ball of cells which migrated from the skin and thrust itself into the mouth of the eye-stalk.” Sir Charles Sherrington, 1951

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alford, F.P., M. Millea, G.M. Reaven. 1976. Effect of food deprivation and hypophysectomy on in vitro protein synthesis by membrane-bound and free hepatic ribosomes. Horm. Metab. Res. 8: 118–122.

    Google Scholar 

  • Becker, 0. 1883. Zur Anatomie der Gesunden und Kranken Linse. Wiesbaden. Verlag von J.F. Bergmann.

    Google Scholar 

  • Briggs, R., H. Rothstein and N.R. Wainwright. 1976a. Cell cycle variations in chromosomal proteins of the lens epithelium. Exptl. Cell Res. 99: 95–105.

    Google Scholar 

  • Briggs, R., N.R. Wainwright, H. Rothstein. 1976b. On the chromosomal proteins of the lens epithelium. Documenta Ophthalmologica 8: 57–65.

    Article  CAS  Google Scholar 

  • Brolin, S.E., H. Diderholm, H. Hammar. 1961. An autoradiographic study on cell migration in the eye lens epithelium. Acta Soc. Med. 66: 43–48.

    Google Scholar 

  • Burstein, P.J., B. Draznin C.J. Johnson, D.S. Schalch. 1979. The effect of hypothyroidism on growth, serum growth hormone, the growth hormone–dependent somatomedin, insulin-like factor, and its carrier protein in rats. Endocrinology 104: 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  • Cogan, D. 1952. Pathogenesis of radiation cataracts. U.S. Atomic Energy Commission, National Research Council, Washington, D.C., Proceedings of January 28, pp. 1–8.

    Google Scholar 

  • Cogan, D., D.D. Donaldson, A.B. Reese. 1952. Clinical and pathological characteristics of radiation cataract. Arch. Ophthalmol. 47: 55–70.

    Google Scholar 

  • Compher, M.R., J.N. Dent. 1970. Responses to thiourea and to surgical thyroidectomy by the autotransplanted pituitary gland in the read spotted newt. Gen. Comp. Endo. 14: 141–147.

    Google Scholar 

  • Daughaday, W.H., K. Hall, M.S. Raben, W.D. Salmon, J.L. Van Den Brande, J.J. Van Wyk. 1972. Somatomedin: Proposed designation for sulphation factor. Nature 235: 107.

    Google Scholar 

  • Dulak, N.C., H.M. Temin. 1973. A partially purified polypeptide fraction from rat liver cell conditioned medium with multiplication-stimulating activity for embryo fibroblasts. J. Cell Physiol. 81: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Duran-Garcia, S., J. Gomez-Nieto, M. Fouchereau-Peron, V.F. Padron, M.J. Obregon, G. Borreale De Escobar, F. Escobar Del Ray. 1979. Effects of thyroid hormones on liver binding sites for human growth hormone, as studied in the rat. Clin. Endocrinology 11: 275–289.

    Google Scholar 

  • Ensor, D.M. 1978. Comparative Endocrinology of Prolactin, Chapman and Hall, London.

    Google Scholar 

  • Eshaghian, J., B.W. Streeten. 1980. Human posterior subcapsular cataract: an ultrastructural study of posteriorly migrating cells. Arch. Ophthalmol. 98: 134–143.

    Google Scholar 

  • Flemming, W. 1882. Zellsubstanz, Kern-und Zelltheilung. Leipzig - see page 376.

    Google Scholar 

  • Fryklund, L., K. Uthne, H. Sievertsson. 1974. Identification of two somatomedin A active polypeptides and in vivo effects of somatomedin A concentrate. Biochem. Biophys. Res. Commun. 61: 957–62.

    Google Scholar 

  • Galton, V.A. 1980. Binding of thyroid hormones in vivo by hepatic nuclei of Rana catesbeiana tadpoles. Endocrinology 106: 859–866.

    Article  PubMed  CAS  Google Scholar 

  • Gaspard, T., R. Wondergem, M. Hamadzie, H.M. Klitgaard. 1978. Serum somatomedin stimulation in throxine-treated hypophysectomized rats. Endocrinology 102: 606–611.

    Article  PubMed  CAS  Google Scholar 

  • Gey, G., W. Thalheimer. 1924. Observations of the effects o.f insulin introduced into the medium of tissue cultures. J. Amer. Med. Assoc. 82: 1609.

    Google Scholar 

  • Goos, H.V. 1978. Hypophysiotropic centers in the brain of amphibians and fish. Amer. Zool. 18: 401–410.

    Google Scholar 

  • Grzedzielski, J. 1935. Zur Histologie der Rontgenkatarakt. Klin. Monat. Augenheilk. 95: 360–369.

    Google Scholar 

  • Hall, T.R., A. Chadwick. 1979. Hyopthalamic control of prolactin and growth hormone secretion in different vertebrate species. Gen. Comp. Endo. 37: 333–342.

    Google Scholar 

  • Hammar, H. 1965. An autoradiographic study on cell migration in the eye lens epithelium from normal and alloxan diabetic rats. Acta Ophthal. 43: 442–453.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, C., J.E. O’Brien. 1963. Lens epithelial cell proliferation and migration in radiation cataracts. Rad. Res. 19: 1–11.

    Google Scholar 

  • Harding, C.V., A. Donn, B.D. Srinivasan. 1959. Incorporation of thymidine by injured lens epithelium. Exptl. Cell Res. 18: 582–585.

    Google Scholar 

  • Harding, C.V., W.L. Hughes, V.P. Bond, P. Schork. 1960. Audioradiographic localization of tritiated thymidine in whole-mount preparations of lens epithelium. Arch. Ophthal. 63: 58–65.

    Google Scholar 

  • Harding, C.V., J.R. Reddan, N.J. Unakar, M. Bagchi. 1971. The control of cell division in the ocular lens. International Review of Cytology 31: 215–300.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, J.H. 1980. Doctoral Dissertation, University of Vermont, Burlington, Vermont.

    Google Scholar 

  • Hayden, J.H., J. Rothstein. 1979. Complete elimination of mitosis and DNA synthesis in the lens of the hypophysectomized frog: Effects on cell migration and fiber growth. Differentiation 15: 153–160.

    Google Scholar 

  • Hayden, J.H., H. Rothstein, B.V. Wdrgul, G.R. Merriam, Jr. 1980. Hypophysectomy exerts a radioprotective effect on frog lens. Experimentia 36: 116–118.

    Article  CAS  Google Scholar 

  • Henle, J. 1882. Zur Entwicklungsgeschichte der Krystallinse und zur Theilung des Zellkerns. Archiv. F. Mikrosk. Anatomie, Bd. 20: 413–430.

    Google Scholar 

  • Hogben, L. 1923. A method of hypophysectomy in adult frogs and toads. Quart. J. Exptl. Physiol. 13: 170–177.

    Google Scholar 

  • Holder, A.T., M. Wallis. 1977. Action of growth hormone, prolactin, and thyroxine on serum somatomedin-like activity and growth in hypopituitary Dwarf mice, J. Endocrinol. 74: 223–229.

    Article  PubMed  CAS  Google Scholar 

  • Howard, A. 1952. Whole mounts of rabbit lens epithelium for cytological study. Stain Technology 27: 313–315.

    PubMed  CAS  Google Scholar 

  • Kibrick, E.A., H. Becks, W. Marx, H.M. Evans. 1941. Effect of different dose levels of growth hormone on the tibia of young hypophysectomized female rats. Growth 5: 437–447.

    Google Scholar 

  • King, J.A., R.P. Miller. 1979. Phylogenetic and anatomical distribution of somatostatin in vertebrates. Endocrinology 105: 1322–1329.

    Article  PubMed  CAS  Google Scholar 

  • Kistler, A., K. Yoshizato, E. Frieden. 1975. Binding of thyroxine and triiodothyronine by nuclei of isolated tadpole liver cells. Endocrinology 97: 1035–1042.

    Article  Google Scholar 

  • Knapp, P. 19OOa. Ueber Heilung von Linsenwunden beim Frosch. Z. Augenheilk. 3: 209–228.

    Google Scholar 

  • Knapp, P. 19OOb. Ueber Heilung von Linserverletzungen beim Fisch. Z. Augenheilk. 3: 50–56.

    Google Scholar 

  • Kuhn, E.R., H. Engelen. 1976. Seasonal variation in prolactin and TSH releasing activity in the hypothalamus of Rana temporaria. Gen. Comp. Endo. 28: 277–282.

    Google Scholar 

  • Leber, Th. 1878. Zur Pathologie der Linse. Zehender’s Klin. Monatsbl., Beilageheft, Verh. der Heidelb. Ophth. Gesellsch. 16: 33–47.

    Google Scholar 

  • Mackenzie, D.S., P. Licht, H. Papkoff. 1978. Thyrotropin from amphibian. Rana catesbeiana. pituitaries and evidence for heterothyrotropic activity of bullfrog luteinizing hormones in reptiles. Gen. Comp. Endo. 36: 566: 574.

    Google Scholar 

  • Martial, J.A., P.H. Seeburg, D. Guenzi, H.M. Goodman H.M., J.D. Badter. 1977. Regulation of growth hormone gene expression: Synergistic effects of thyroid and glucocorticoid hormones. Proc. Natl. Acad. Sci. 74: 4293–4295.

    Google Scholar 

  • Mikulicich, A., R. Young. 1963. Cell proliferation and displacement in the lens epithelium of young rats injected with tritiated thymidine. Invest. Ophthalmol. 2: 344–354.

    Google Scholar 

  • Messier, B., C.P. Leblond. 1960. Cell proliferation and migration as revealed by radioautography after injection of 3H-thymidine into male rats and mice. Amer. J. Anat. 106: 247–285.

    Google Scholar 

  • Phillips, L.S., R. Vassilopoulou-Sellin. 1980. Somatomedins. New England Journal of Medicine 302:371–380; 438–446.

    Google Scholar 

  • Poppe, E. 1924a. Experimental investigations of the effects of Roentgen-rays on the eye. Skr. Norske Vidensk.-Adak. Oslo, Mat. - Naturv. K1: 1–102.

    Google Scholar 

  • Poppe, E. 1924b. Experimental investigations of the effects of Roentgen-rays on the epithelium of the crystalline lens. Acta Radiol. Stock. 23: 354–367.

    Google Scholar 

  • Rabl, C. 1900. Über den Bau und die Entwicklung der Linse. Leipzig Verlag von Wilhelm Engelmann.

    Google Scholar 

  • Rafferty, N. 1963. Studies of an injury-induced growth in the frog lens. Anat. Rec. 146: 299–312.

    Google Scholar 

  • Rafferty, N. 1965. Propagation and prolongation of mitotic activity in the formation of injury-induced lentomas in Rana pipiens. Anat. Rec. 153: 111–128.

    Google Scholar 

  • Reddan, J.R., C.V. Harding, D. Harding, A. Weinsieder, N. Unakar, R. Shapiro, C. Mathews. 1975. Seasonal mitotic activity and wound healing in a teleost ( Opsanus tau) ocular lens. Experienta 31: 1026–1027.

    Google Scholar 

  • Reddan, J.R., C.V. Harding, H. Rothstein, M.W. Crotty, P. Lee, N. Freeman. 1972. Stimulation of mitosis in the vertebrate lens in the presence of insulin. Ophthalmic Research 3: 65–82.

    Article  CAS  Google Scholar 

  • Reddan, J.R., D. Wilson. 1979. Insulin growth factors I and II stimulate mitosis in the epithelia of mammalian lenses cultured in a serum free medium. J. Cell Biol. 83: 113a.

    Google Scholar 

  • Rinderknecht, E., R.E. Humbel. 1978. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253: 2769–2776.

    Google Scholar 

  • Rinderknecht, E., R.E. Humbel. 1978. Primary structure of human insulin-like growth factor II. FEBS Lett. 89: 283–286.

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum, D.M., H. Rothstein. 1972. Mitotic variations in the lens epithelium of the frog. Ophthalmic Research 3: 95–107.

    Article  Google Scholar 

  • Rothstein, H. 1968. Experimental techniques for investigation of the amphibian lens epithelium. In: Methods in Cell

    Google Scholar 

  • Physiology, ed. D.M. Prescott, pp. 45–74, vol. 3, Academic Press, NY.

    Google Scholar 

  • Rothstein, H., E. Essner, K. Frank, A. Weinsieder. in press a. The metabolic basis for the lens growth inhibiting effect of hypophysectomy. II. The liver. Metabolic and Pediatric Ophthamology.

    Google Scholar 

  • Rothstein, H., C.V. Harding. 1962. Injury-induced synthesis of deoxyribonucleic acid in the lens of the sea bass. Nature 194: 294–295.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, H., R. Van Buskirk, J.R. Reddan. 1976. Hypophysectomy inhibits wound hyperplasia in the adult frog lens. Ophthalmic Research 8: 43–54.

    Article  Google Scholar 

  • Rothstein, H., R. Van Buskirk, S.R. Gordon, Worgul, B.V. 1975. Seasonal variations in mitosis in the frog: a field study. Experienta 31: 939–940.

    Article  CAS  Google Scholar 

  • Rothstein, H., J.J Van Wyk, J.H. Hayden, S.R. Gordon, A. Weinsieder. 1980. Somatomedin-c: Restoration in vivo of cycle traverse in GO/G1 blocked cells of hypophysectomized animals. Science 208: 410–412.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, H., N. Wainwright, S.R. Gordon, J.H. Hayden. 1979. Immunostaining of the bullfrog. Rana catesbeiana. lactotroph with antiserum to homologous prolactin. Cellular and Molecular Biology 26: 1–7.

    Google Scholar 

  • Rothstein, H., A. Weinsieder, R. Blaiklock. 1964. Response to injury in the lens epithelium of the bullfrog, Rana catesbeiana. Exptl. Cell Res. 35: 548–556.

    Google Scholar 

  • Rothstein, H., A. Weinsieder, M.E. Wilson. in press b. The metabolic basis for the lens growth inhibiting effect of hypophysectomy. I. The blood. Metabolic and Pediatric Ophthamology.

    Google Scholar 

  • Sakharova, N.Yu., V.A. Golichenkov. 1968. Seasonal changes in regeneration ability of frog. Rana temporaria. lens epithelium. Tsitologiya 10: 896–899.

    Google Scholar 

  • Salmon, W.D., W.H. Daughaday. 1957. A hormonally controlled serum factor which stimulates sulfate incorpation by cartilage in vitro. J. Lab Clin. Med. 49: 825–836.

    Google Scholar 

  • Schalch, D.S., V.E. Heinrich, B. Draznin, C.J. Johnson, L.L. Miller. 1979. Role of the liver in mediating somatomedin activity: Hormonal effects on the synthesis and release of insulin-like growth factor and its carrier protein by the isolated perfused rat liver. Endocrinology 104: 1143–1151.

    Google Scholar 

  • Shapiro, B., B. L. Pimstone. 1977. A phylogenetic study of sulphation factor activity in 26 species. J. Endocr. 74: 129–135.

    Article  PubMed  CAS  Google Scholar 

  • Sherrington, C.S. 1951. Man on his Nature, second edition, Cambridge University Press, London, New York City.

    Google Scholar 

  • Snyder, B.W., B.E. Frye. 1972. Physiological responses of larval and post-metamorphic Rana pipiens to growth hormone and prolactin. J. Exp. Zool. 179: 299–314.

    Google Scholar 

  • Streeten, B.W., Eshaghian, J. 1978. Human posterior subcapsular cataract. Arch. Ophthal. 96: 1653–1658.

    Google Scholar 

  • Van Buskirk, R., B.V. Worgul, H. Rothstein, N. Wainwright. 1975. Mitotic variations in the lens epithelium of the frog. III. Somatotropin. Gen Comp. Endo. 29: 52–59.

    Google Scholar 

  • Vandesande, F., K. Dierickx. 1980. Immunocytochemical localization of somatostatin-containing neurons in the brain of Rana temporaria. Cell Tissue Res. 205: 43–53.

    Article  PubMed  CAS  Google Scholar 

  • Van Wyk, J.J., R.L. Hintz. 1979. Peptide growth factors. In: Endocrinology, ed. L.J. DeGroot, Grune and Stratton, New York, 1767–1775.

    Google Scholar 

  • Van Wyk, J.J., L.E. Underwood. 1975. Relation between growth hormone and somatomedin. Ann. Rev. Med. 26: 427–441.

    Google Scholar 

  • Van Wyk, J.J., L.E. Underwood. 1978. The somatomedins and their actions. In: Biochemical Actions of Hormones. ed. G. Litwack, 5: 101–148, Academic Press, New York.

    Google Scholar 

  • Van Wyk, J.J., L.E. Underwood, M.E. Svoboda, D. Clemmons, D. Klapper, R.E. Fellows, H. Rothstein. 1980. Somatomedin-C: Chemistry and Biology. In: Growth Hormone and other Biologically Active Peptides, eds. A. Pecile and E.E. Muller. Excerpta Medica International Congress Series 495, Amsterdam, pp. 73–80.

    Google Scholar 

  • Vassilopoulou-Sellin, R., L.S. Phillips, L.A. Reichard. 1980. Nutrition and somatomedin. VII. Regulation of somatomedin activity by the perfused rat liver. Endocrinology 106: 260–267.

    Google Scholar 

  • Von Becker, F.J. 1863. Untersuchungen uber den Bau der Linse bei dem Menschen und den Wirbelthieren. Archiv fur Ophthalmologie. 9: 1–41.

    Google Scholar 

  • Von Sallmann, L. 1957. The lens epithelium in the pathogenesis of X-ray cataract. 13th Edward Jackson Memorial Lecture. Am. J. Ophthal. 44: 159–170.

    Google Scholar 

  • Von Sallmann, L., P. Grimes, N. McElvain. 1962. Aspects of mitotic activity in relation to cell proliferation in the len: epithelium. Exptl. Eye Res. 1: 449–456.

    Google Scholar 

  • Von Sallmann, L., P. Grimes. 1966. Effect of age on cell division, 3H-thymidine incorporation and diurnal rhythm in th(lens epithelium of rats. Invest. Ophthal. 5: 560–567.

    Google Scholar 

  • Wainwright, N., J.H. Hayden, H. Rothstein. 1978. Total disappearance of cell proliferation in the lens of a hypophysectomized animal: In vivo and in vitro maintenance of inhibition with reversal by pituitary factors. Cytobios 23: 79–92.

    Google Scholar 

  • Wainwright, N., H. Rothstein, S. Gordon. 1976. Mitotic variations in the lens epithelium of the frog. IV. Studies with isolated anuran pituitary factors. Growth 40: 317–328.

    Google Scholar 

  • Wedl, C. 1860. Atlas der Pathologischen Histologie des Auges Leipzig, Georg Wigan Verlag.

    Google Scholar 

  • Weinsieder, A. 1973. Doctoral Dissertation, University of Vermont, Burlington, Vt.

    Google Scholar 

  • Weinsieder, A., H. Rothstein, D. Drebert. 1973. Lenticular wound healing: Evidence for genomic activation. Cytobiologie 7: 406–417.

    Google Scholar 

  • Weinsieder, A., H. Rothstein. 1980. Autoradiographic localization of human growth hormone in amphibian hepatocyte: IRCS Medical Science 8: 155–156.

    CAS  Google Scholar 

  • Weinstein, R., B. Stemerman, T. Maciag. 1981. Hormonal requirements for growth of arterial smooth muscle cells in vitro: An endocrine approach to atherosclerosis. Science 212: 818–820.

    Google Scholar 

  • Worgul, B.V., H. Rothstein. 1974. On the mechanism of thyroic mediated mitogenesis in adult anura: I. Preliminary analyses of growth kinetics and macromolecular synthesis, in lens epithelium, under the influence of exogenous triiodothyronin Cell and Tissue Kinetics 7: 415–424.

    CAS  Google Scholar 

  • Worgul, B.V., G.R. Merriam, Jr., A. Szechter, B.D. Srinivasan 1976. The lens epithelium and radiation cataract. I. Preliminary studies. Arch. Ophthal. 94: 996–999.

    Google Scholar 

  • Worgul, B.V., H. Rothstein, C. Medvedovsky, G.R. Merriam, Jr., M.E. Wilson. in press. Radiation cataractogenesis in the amphibian lens. Ophthalmic Research.

    Google Scholar 

  • Yalow, R.S., K. Hall, R. Luft. 1975. Radioimmunoassay of somatomedin B: Application to clinical and physiologic studies. J. Clin. Invest. 55: 127–137.

    Google Scholar 

  • Zapf, J., E. Rinderknecht, R.E. Humbel, E.R. Froesch. 1978. Nonsuppressible insulin-like activity. NSILA. from human serum: Recent accomplishments and their physiologic implications. Metabolism 27: 1803–1828.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rothstein, H., Worgul, B., Weinsieder, A. (1982). Regulation of Lens Morphogenesis and Cataract Pathogenesis by Pituitary-dependent, Insulin-like Mitogens. In: Sheffield, J.B., Hilfer, S.R. (eds) Cellular Communication During Ocular Development. Cell and Developmental Biology of the Eye. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26557-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26557-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-90773-2

  • Online ISBN: 978-3-662-26557-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics