Skip to main content

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 74 Accesses

Summary

The use of leukodepleted blood components has grown dramatically in recent years. This growth has been fueled by the demand to minimize risks and optimize the quality of cellular blood components used in transfusion practice. Blood filtration, using high performance filters, is effective in removing significant numbers of donor leukocytes. However, filtration increases the cost of red cell transfusions by 25% and platelet transfusions by 17% over standard blood components. The important issue in determining the cost-effectiveness of leukodepletion is whether any added benefit attributable to a reduced leukocyte load is worth this increased cost.

Recent reports suggest that the use of leukodepleted blood components may be cost-effective in patients with hematologic malignancies who require long-term transfusion support. The precise clinical indications and cost-effectiveness in other patient groups have not been defined. If the preliminary results for hematologic indications are applicable to other diseases, it would appear that wider use of leukodepletion may be both inevitable and desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lane TA, Anderson KC, Goodnough LT, et al. Leukocyte reduction in blood component therapy. Annals of Internal Medicine 117: 151, 1992.

    Article  PubMed  CAS  Google Scholar 

  2. Perkins HA. Is white cell reduction cost-effective? Transfusion 33: 626, 1993.

    Article  PubMed  CAS  Google Scholar 

  3. Balducci L, Benson K, Lyman GH, et al. Cost-effectiveness of white-cell reduction filters in treatment of adult acute myeloid leukemia. Transfusion 33: 665, 1993.

    Article  PubMed  CAS  Google Scholar 

  4. Blumberg N, Heal J, Rapoport A, et al. Effect of ABO-identical platelets and leukodepletion (LD) on blood utilization and costs of autologous marrow transplantation (BMT). Transfusion 33: A16; 83S, 1993.

    Google Scholar 

  5. Blumberg N, Heal J, Kirkley S, et al. Cost-effectiveness of leukodepleted transfusions during induction therapy for acute leukemia. Transfusion 33: 83S, 1993.

    Google Scholar 

  6. Oksanen K, Elonen E. Impact of leukocyte-depleted blood components on the haematological recovery and prognosis of patients with acute myeloid leukaemia. Br J of Haematol 84: 639, 1993.

    Article  CAS  Google Scholar 

  7. Sox HC, Blatt MA, Higgins MC, Marton KI. Medical Decision Making. Boston: Butterworth, 1988.

    Google Scholar 

  8. Finkler SA. The distinction between costs and charges. Annals of Internal Medicine 96: 102, 1982.

    Article  PubMed  CAS  Google Scholar 

  9. Conn RB, ed. Manual for laboratory workload recording method. Chicago: College of American Pathologists, 1989.

    Google Scholar 

  10. Provider Specific file. US Dept of Health and Human Services, Health Care Financing Administration, Office of Statistics and Data Management, Bureau of Data Management and Strategy, Baltimore: 1990.

    Google Scholar 

  11. Schiffer CA. Prevention of alloimmunization against platelets. Blood 77: 1, 1991.

    PubMed  CAS  Google Scholar 

  12. Masse M, Andreu G, Angue M, et al. A multicenter study on the efficiency of white cell reduction by filtration of red cells. Transfusion 31: 792, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Sniecinski I, O’Donnell MR, Nowicki B, et al. Prevention of refractoriness and HLAalloimmunization using filtered blood products. Blood 71: 1402, 1988.

    PubMed  CAS  Google Scholar 

  14. Rebulla P, Porretti L, Bertolini F, et al. White cell-reduced red cells prepared by filtration: a critical evaluation of current filters and methods for counting residual white cells. Transfusion 33: 128, 1993.

    Article  PubMed  CAS  Google Scholar 

  15. Forbes JM, Anderson MD, Anderson GF, et al. Blood transfusion costs: a multicenter study. Transfusion 31: 318, 1991.

    Article  PubMed  CAS  Google Scholar 

  16. Wallace EL, Surgenor DM, Hao HS, et al. Collection and transfusion of blood components in the United States, 1989. Transfusion 33: 139, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Hornbrook MC, Dodd RY, Jacobs P, et al. Reducing the incidence of non-A, non-B post-transfusion hepatitis by testing donor blood for alanine aminotransferase. NEJM 307: 1315, 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Eisenstaedt RS, Getzen TE. Screening blood donors for human immunodeficiency virus antibody: cost-benefit analysis. Am J Public Health 78: 450, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Scitovsky AA, Rice DP. Estimates of the direct and indirect costs of acquired immunodeficiency syndrome in the United States, 1985, 1986, 1991. Public Health Reports 102:5, 1987.

    Google Scholar 

  20. Birkmeyer JD, Goodnough LT, AuBuchon JP, et al.’The cost-effectiveness of preoperative autologous blood donation for total hip and knee replacement. Transfusion 33: 544, 1993.

    Article  PubMed  CAS  Google Scholar 

  21. Dodd RY. The risk of transfusion-transmitted infection. N Engl J Med 327: 419, 1992.

    Article  PubMed  CAS  Google Scholar 

  22. Eernisse JG, Brand A. Prevention of platelet refractoriness due to HLA antibodies by administration of leukocyte-poor blood components. Exp Hematol 9: 77, 1981.

    PubMed  CAS  Google Scholar 

  23. Schiffer CA, Dutcher JP, Aisner J, et al. A randomized trial of leukocyte-depleted platelet transfusion to modify alloimmunization in patients with leukemia. Blood 61: 815, 1983.

    Google Scholar 

  24. Murphy MF, Metcalfe P, Thomas H, et al. Use of leukocyte-poor components and HLA-matched-platelet donors to prevent HLA alloimmunization. Br J Haematol 62: 529, 1986.

    Article  PubMed  CAS  Google Scholar 

  25. Andreu G, Dewailly J, Leberre C, et al. Prevention of HLA immunization with leukocyte-poor packed red cells and platelet concentrates obtained by filtration. Blood 71: 964, 1988.

    Google Scholar 

  26. Saarinen UM, Kekomaki R, Siimes MA et al. Effective prophylaxis against platelet refractoriness in multitransfused patients by use of leukocyte-free blood components. Blood 75: 512, 1990.

    PubMed  CAS  Google Scholar 

  27. van Marwijk Kooy M, van Prooijen HC, Moes M. Use of leukocyte-depleted platelet concentrates for the prevention of refractoriness and primary HLA alloimmunization: A prospective, randomized trial. Blood 77: 201, 1991.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forbes, J.M., Anderson, M.A., Gould, S.A. (1995). Cost-Effectiveness of Leukodepletion. In: Clinical Benefits of Leukodepleted Blood Products. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26538-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26538-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57059-122-8

  • Online ISBN: 978-3-662-26538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics