Leukocyte Depleted Blood Transfusion in Hematopoietic Stem Cell Reconstitution Therapy

  • John P. Miller
  • Paul D. Mintz
Part of the Medical Intelligence Unit book series (MIUN)


The transfusion of red blood cells and platelets is an essential element in the treatment of patients undergoing hematopoietic stem cell transplantation. While blood component therapy has enabled patients to survive the cytopenic period of stem cell therapy, it has been accompanied by the risks and discomforts of transfusion. Although it has been known for almost 30 years that leukocyte depletion is an effective means of preventing many febrile reactions to red blood cell transfusions, only in the last few years has it become apparent that the present technical capability for leukocyte depletion of red blood cell and platelet concentrates affords the opportunity potentially to prevent alloimmunization to HLA antigens and also reduce cytomegalovirus (CMV) transmission as effectively as CMV-seronegative components. Additionally, it is possible that leukocyte depleted components do not cause the immunosuppressive effects noted after allogeneic blood transfusion. Further, there is evidence that there is no clinical disadvantage to providing leukocyte depleted red blood cells and platelets.

There is strong circumstantial evidence that the use of leukocyte depleted red blood cell and platelet components from the time of diagnosis in individuals who may undergo stem cell transplantation and their continued use during transplant therapy is a cost effective strategy for improving patient care.


Human Leukocyte Antigen Disseminate Intravascular Coagulation Graft Versus Host Disease Platelet Transfusion Yersinia Enterocolitica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freedman JJ, Blajchman MA, McCombie N. Canadian Red Cross Society Symposium on Leukodepletion: report of proceedings. Transf Med Rev 8: 1, 1994.CrossRefGoogle Scholar
  2. 2.
    Lane TA, Anderson KC, Goodnough LT, et al. Leukocyte reduction in blood component therapy. Ann Int Med 117: 151, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Doan CA. The recognition of a biologic differentiation in the white blood cell with especial reference to blood transfusion. JAMA 86: 1593, 1926.CrossRefGoogle Scholar
  4. 4.
    Brittingham TC, Chaplin H Jr. Febrile transfusion reactions caused by sensitivity to donor leukocytes and platelets. JAMA 165: 819, 1957.CrossRefGoogle Scholar
  5. 5.
    Perkins HA, Payne R, Ferguson J, Wood M. Nonhemolytic febrile transfusion reactions. Quantitative effects of blood components with emphasis on isoantigenic incompatibility of leukocytes. Vox Sang 11: 578, 1966.PubMedCrossRefGoogle Scholar
  6. 6.
    Menitove JE, McElligott MC, Aster RH. Febrile transfusion reaction: what component should be given next? Vox Sang 42: 318, 1982.PubMedCrossRefGoogle Scholar
  7. 7.
    Walker RH, ed. Technical Manual. 11th ed. Bethesda, MD. American Association of Blood Banks, 1993.Google Scholar
  8. 8.
    Mintz PD. Febrile reactions to platelet transfusions. Am J Clin Pathol 95: 609, 1991.PubMedGoogle Scholar
  9. 9.
    Decary F, Ferner P, Giavedoni L, et al. An investigation of non-hemolytic transfusion reactions. Vox Sang 46: 277, 1984.PubMedCrossRefGoogle Scholar
  10. 10.
    de Rie MA, van der Plas-van Dalen CM, Engelfriet CP, von dem Borne AEGK: The serology of febrile transfusion reactions. Vox Sang 49: 126, 1985.CrossRefGoogle Scholar
  11. 11.
    Brubaker DB. Clinical significance of white cell antibodies in febrile nonhemolytic transfusion reactions. Transfusion 30: 733, 1990.PubMedCrossRefGoogle Scholar
  12. 12.
    Dinarello CA, Wolff SM. Molecular basis of fever in humans. Am J Med 72: 799, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Dzik WH. Is the febrile response to transfusion due to donor or recipient cytokine? Transfusion 32: 594, 1992.PubMedCrossRefGoogle Scholar
  14. 14.
    Okusawa S, Dianrello CA, Endres S, et al.: C5a induction of human interleukin-1: synergistic effect with endotoxin or interferon“. J Immunol 139: 2635, 1987.PubMedGoogle Scholar
  15. 15.
    Muylle L, Joos M, Wouters E, De Bock R, Peetermans ME. Increased tumor necrosis factor a (TNFa), interleukin 1, and interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates: relationship between TNFa and IL-6 levels and febrile transfusion reactions. Transfusion 33: 195, 1993.PubMedCrossRefGoogle Scholar
  16. 16.
    See Aye as referenced in Freedman JJ, Blajchman MA, McCombie N. Canadian Red Cross Society Symposium on Leukodepletion: Report of Proceedings. Transf Med Rev 8: 1, 1994.Google Scholar
  17. 17.
    Stack G, Snyder EL. Cytokine generation in stored platelet concentrates. Transfusion 34: 20, 1994.PubMedCrossRefGoogle Scholar
  18. 18.
    Smith KJ, Sierra ER, Nelson EJ. Plasma 1L-8 and 1L-6 increase in platelet concentrates (PC) stored for 5 days but not in PC leukodepleted pre-storage. Transfusion 33: 53S, 1993.Google Scholar
  19. 19.
    Smith KJ, Sierra ER, Nelson EJ. Histamine, IL-1B, and IL-8 increase in packed RBCs stored for 42 days but not in RBCs leukodepleted pre-storage. Transfusion 33: 53S, 1993.Google Scholar
  20. 20.
    Meryman HT, Hornblower M. The preparation of red cells depleted of leukocytes: review and evaluation. Transfusion 26: 101, 1986.PubMedCrossRefGoogle Scholar
  21. 21.
    Sirchia G, Rebulla P, Parravicini A, Carnelli V, Gianotti AG, Bertolini F. Leukocyte depletion of red cell units at the bedside by transfusion through a new filter. Transfusion 27: 402, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Sirchia G, Wenz B, Rebulla P, Parravicini A, Carnelli V, Bertolini, F. Removal of white cells from red cells by transfusion through a new filter. Transfusion 30: 30, 1990.PubMedCrossRefGoogle Scholar
  23. 23.
    Dan ME, Stewart S. Prevention of recurrent febrile transfusion reactions using leukocyte poor platelet concentrates prepared by the “leukotrap” centrifugation method. Transfusion 26: 569, 1986.Google Scholar
  24. 24.
    Stec N, Kickler TS, Ness PM, Braine HG. Effectiveness of leukocyte (WBC) depleted platelets in preventing febrile reactions in multi-transfused oncology patients. Transfusion 26: 569, 1986.CrossRefGoogle Scholar
  25. 25.
    Schiffer CA, Patten E, Reilly J, Patel S. Effective leukocyte removal from platelet preparations by centrifugation in a new pooling bag. Transfusion 27: 162, 1987.PubMedCrossRefGoogle Scholar
  26. 26.
    Kalmin ND, Orell JE, Villarreal IG. An effective method for the preparation of leukocyte-poor platelets. Transfusion 27: 281, 1987.PubMedCrossRefGoogle Scholar
  27. 27.
    Sternbach M, Champagne J, Rybka W, Paquin M. Leukotrap, a device for white cell poor platelets. Quality control studies in vitro and in vivo. Trans Science 10: 57, 1989.CrossRefGoogle Scholar
  28. 28.
    Slichter SJ. Mechanisms and management of platelet refractoriness. In: Nance SJ, ed. Transfusion Medicine in the 1990s. Arlington, VA. American Association of Blood Banks, 95, 1990.Google Scholar
  29. 29.
    Mangano MM, Chambers LA, Kruskall MS. Limited efficacy of leukopoor platelets for prevention of febrile transfusion reactions. Am J Clin Pathol. 95: 733, 1991.PubMedGoogle Scholar
  30. 30.
    Goodnough LT, Riddell J, Lazarus H, Chafel TL, Prince G, Hendrix D, Yomtovian R. Prevalence of platelet transfusion reactions before and after implementation of leukocyte-depleted platelet concentrates by filtration. Vox Sang 65: 103, 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Confer DL. The prevention of HLA alloimmunization. In: Clinical Decisions in Platelet Therapy 1992.Google Scholar
  32. 32.
    Rio B, Nichol AG, et al. Thrombocytopenia in venoocclusive disease after bone marrow transplantation or chemotherapy. Blood 67: 1773, 1986.PubMedGoogle Scholar
  33. 33.
    Lee EJ, Schiffer CA. Serial measurement of lymphocytotoxic antibody and response to non-matched platelet transfusions in alloimmunization patients. Blood 70: 1727, 1987.PubMedGoogle Scholar
  34. 34.
    Schiffer CA, Lichtenfeld JL, Wiernik PH, Mardiney MR, Joseph JM. Antibody response in patients with acute non-lymphocytic leukemia. Cancer 37: 2177, 1976.PubMedCrossRefGoogle Scholar
  35. 35.
    Dutcher JP, Schiffer CA, Aisner J, Wiernik PH. Long-term follow-up of patients with leukemia receiving platelet transfusions: Identification of a large group of patients who do not become alloimmunized. Blood 58: 1007, 1981.PubMedGoogle Scholar
  36. 36.
    Daly PA, Schiffer CA, Aisner J, Wiernik PA. Platelet transfusion therapy-One hour post-transfusion increments are valuable in predicting the need for HLA-matched preparations. JAMA 243: 435, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    O’Connell B, Lee EJ, Schiffer CA. The value of 10-minute posttransfusion platelet counts. Transfusion 28: 66, 1988.PubMedCrossRefGoogle Scholar
  38. 38.
    Bishop JF, McGrath K, Wolf MM, et al. Clinical factors influencing the efficacy of pooled platelet transfusions. Blood 71: 383, 1988.PubMedGoogle Scholar
  39. 39.
    Kickler TS. The challenge of platelet alloimmunization: management and prevention. Trans Med Rev 4: 8, 1990.CrossRefGoogle Scholar
  40. 40.
    Kickler T, Braine HG, Piantodosi S, et al. A randomized, placebo-controlled trial of intravenous gammaglobulin in alloimmunized thrombocytopenic patients. Blood 75: 313, 1990.PubMedGoogle Scholar
  41. 41.
    Sintnicolaas K, Sizoo W, Haije WG, et al. Delayed alloimmunisation by random single donor platelet transfusions. A randomised study to compare single donor and multiple donor platelet transfusions in cancer patients with severe thrombocytopenia. Lancet 1: 750, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Gmür J, von Felten A, Osterwalder B, et al. Delayed alloimmunization using random single donor platelet transfusions: A prospective study in thrombocytopenic patients with acute leukemia. Blood 62: 473, 1983.PubMedGoogle Scholar
  43. 43.
    Heddle NM. The efficacy of leukodepletion to improve platelet transfusion response: a critical appraisal of clinical studies. Trans Med Rev. 8: 15, 1994.CrossRefGoogle Scholar
  44. 44.
    Andreu G, Boccaccio C, Klaren J, et al. The role of UV radiation in the prevention of human leukocyte antigen alloimmunization. Trans Med Rev 6: 212, 1992.CrossRefGoogle Scholar
  45. 45.
    Eernisse JG, Brand A. Prevention of platelet refractoriness due to HLA antibodies by administration of leukocyte-poor blood components. Exp Hematol 9: 77, 1981.PubMedGoogle Scholar
  46. 46.
    Schiffer CA, Dutcher JP, Aisner J, et al. A randomized trial of leukocyte-depleted platelet transfusion to modify alloimmunization in patients with leukemia. Blood 62: 815, 1983.PubMedGoogle Scholar
  47. 47.
    Fisher M, Chapman JR, Ting A, Morris PJ. Alloimmunisation to HLA antigens following transfusion with leucocyte-poor and purified platelet suspensions. Vox Sang 49: 331, 1985.PubMedCrossRefGoogle Scholar
  48. 48.
    Murphy ME, Metcalfe P, Thomas H, et al. Use of leucocyte-poor blood components and HLA-matched-platelet donors to prevent HLA alloimmunization. Br J Haematol 62: 529, 1986.PubMedCrossRefGoogle Scholar
  49. 49.
    Sniecinski I, O’Donnell MR, Nowicki B, et al. Prevention of refractoriness and HLAalloimmunization using filtered blood products. Blood 71: 1402, 1988.PubMedGoogle Scholar
  50. 50.
    Andreu G, Dewailly J, Leberre C, et al. Prevention of HLA immunization with leukocyte-poor packed red cells and platelet concentrates obtained by filtration. Blood 72: 964, 1988.PubMedGoogle Scholar
  51. 51.
    Brand A, Claas FHJ, Voogt PJ, et al. Alloimmunization after leukocyte-depleted multiple random donor platelet transfusions. Vox Sang 54: 160, 1988.PubMedCrossRefGoogle Scholar
  52. 52.
    Saarinen UM, Kekomäki R, Siimes MA, et al. Effective prophylaxis against platelet refractoriness in multitransfused patients by use of leukocyte-free blood components. Blood 75: 512, 1990.PubMedGoogle Scholar
  53. 53.
    Oksanen K, Kekomäki R, Ruutu T, et al. Prevention of alloimmunization in patients with acute leukemia by use of white cell-reduced blood components-A randomized trial. Transfusion 31: 588, 1991.PubMedCrossRefGoogle Scholar
  54. 54.
    van Marwijk Kooy M, van Prooijen HC, Moes M, et al. Use of leukocyte-depleted platelet concentrates for the prevention of refractoriness and primary HLA allo-immunization: A prospective, randomized trial. Blood 77: 201, 1991.Google Scholar
  55. 55.
    Saarinen UM, Koskimies S, Myllylä G. Systematic use of leukocyte-free blood components to prevent alloimmunization and platelet refractoriness in multitransfused children with cancer. Vox Sang 65: 286, 1993.PubMedCrossRefGoogle Scholar
  56. 56.
    Slichter SJ, O’Donnell MR, Weiden PL, et al. Canine platelet alloimmunization: the role of donor selection. Br J Hematol 63: 713, 1986.CrossRefGoogle Scholar
  57. 57.
    Welsh KI, Burgos H, Batchelor JR. The immune response to allogeneic rat platelets: Ag-B antigens in matrix form lacking la. Eur J Immunol 7: 267, 1977.PubMedCrossRefGoogle Scholar
  58. 58.
    Dausset J, Rapaport FT. Transplantation antigen activity of human blood platelets. Transplantation 4: 182, 1966.PubMedCrossRefGoogle Scholar
  59. 59.
    Buchholz DH, Miripol J, Aster RH, et al. Ultraviolet irradiation of platelets to prevent recipient alloimmunization. Transfusion 28: S91, 1988.Google Scholar
  60. 60.
    Menitove JE, Kagen LR, Aster RH, et al. Alloimmunization is decreased in patients receiving UV-B irradiated platelet concentrates and leukocyte-depleted red cells. Blood 76: 1607, 1990.Google Scholar
  61. 61.
    Pamphilon DH, Blundell EL. Ultraviolet B irradiation of platelet transfusions: A strategy to reduce recipient alloimmunization. Semin Hematol 29: 118, 1992.Google Scholar
  62. 62.
    Kahn RA, Duffy BF, Rodey GG. Ultraviolet irradiation of platelet concentrate abrogates lymphocyte activation without affecting platelet function in vitro. Transfusion 25: 547, 1985.PubMedCrossRefGoogle Scholar
  63. 63.
    Snyder EL, Beardsly D, Smith B, et al. Storage of platelet concentrates after UV-B irradiation. Blood 74: 179a (abstr), 1989.Google Scholar
  64. 64.
    Pamphilon DH, Potter M, Cutts M, et al. Platelet concentrates irradiated with ultraviolet light retain satisfactory in vitro storage characteristics and in vivo survival. Br J Haematol 75: 240, 1990.PubMedCrossRefGoogle Scholar
  65. 65.
    Blajchman MA, Bardossy L, Carmen RA, Goldman M, Heddle NM, Singal DP. An animal model of allogeneic donor platelet refractoriness: the effect of the time of leukodepletion. Blood 79: 1371, 1992.PubMedGoogle Scholar
  66. 66.
    Schiffer CA. Prevention of alloimmunization against platelets. Blood 77: 1, 1991.PubMedGoogle Scholar
  67. 67.
    Perkins HA. Is white cell reduction effective? Transfusion 33: 626, 1993.PubMedCrossRefGoogle Scholar
  68. 68.
    Balducci L, Benson K, Lyman GH, Sanderson R, Fields K, Ballester OF, Elfenbein GJ. Cost-effectiveness of white cell-reduction filters in treatment of adult acute myelogenous leukemia. Transfusion 33: 665, 1993.PubMedCrossRefGoogle Scholar
  69. 69.
    Blumberg N, Heal J, Kirkley S, Panzer R, Rowe J. Cost effectiveness of leukodepleted (LD) transfusions during induction therapy for acute leukemia. Transfusion 33: 84S, 1993.Google Scholar
  70. 70.
    Sniecinski I. Prevention of immunologic and infectious complications of transfusion by leukocyte depletion. In: Clinical Application of Leukocyte Depletion. Sekiguchi S, ed, Blackwell Scientific Publication, Osney Mead Oxford, 1993.Google Scholar
  71. 71.
    Blumberg N, Heal J, Rapoport A, DiPersio J, Rowe J, Panzer R. Effect of ABO-identical platelets and leukodepletion (LD) on blood utilization and costs of autologous marrow transplantation (BMT). Transfusion 33: 83S, 1993.Google Scholar
  72. 72.
    Oksanen K, Elonen E. Impact of leucocyte-depleted blood components on the haematological recovery and prognosis of patients with acute myeloid leukaemia. Br J Haem 84: 639, 1993.CrossRefGoogle Scholar
  73. 73.
    Hirsch MS. Ctyomegalovirus infection. In: Harrison’s Principles of Internal Medicine. 12th ed. Wilson JD, et al, eds., McGraw-Hill, Inc. 1991.Google Scholar
  74. 74.
    Kaariainen L, Klemola E, Paloheimo J. Rise of cytomegalovirus antibodies in an infectious mononucleosis-like syndrome after transfusion. Br Med J 1: 1270, 1966.PubMedCrossRefGoogle Scholar
  75. 75.
    Sayers MH, Anderson KC, Goodnough LT. Reducing the risk for transfusion-transmitted cytomegalovirus infection. Ann Int Med 116: 55, 1992.PubMedCrossRefGoogle Scholar
  76. 76.
    Verdonck LF, van Heugten H, de Gast GC. Delay in platelet recovery after bone marrow transplantation: impact of cytomegalovirus infection. Blood 66: 921, 1985.PubMedGoogle Scholar
  77. 77.
    Wingard JR, Ghen DY, Burns WH, Fuller DJ, Braine HG, Yeager AM, et al. Cytomegalovirus infection after autolgous bone marrow transplantation with comparison to infection after allogeneic bone marrow transplantation. Blood 71: 1432, 1988.PubMedGoogle Scholar
  78. 78.
    Reusser P, Fisher LD, Buckner CD, Thomas ED, Meyers JD. Cytomegalovirus infection after autologous bone marrow transplantation: occurrence of cytomegalovirus disease and effect on engraftment. Blood 75: 1888, 1990.PubMedGoogle Scholar
  79. 79.
    Bowden RA, Sayers M, Flournoy N, Newton B, Banaji M, Thomas ED, et al. Cytomegalovirus immune globulin and seronegative blood products to prevent primary cytomegalovirus infection after marrow transplantation. N Engl J Med 314: 1006, 1986.PubMedCrossRefGoogle Scholar
  80. 80.
    Lang DJ, Ebert PA, Rodgers BM, Boggess HP, Rixse RS. Reduction of postperfusion cytomegalovirus infections following the use of leukocyte depleted blood. Transfusion 17: 391, 1977.PubMedCrossRefGoogle Scholar
  81. 81.
    Luban NL, Williams AE, McDonald MG, Mikesell GT, Williams KM, Sacher RA. Low incidence of cytomegalovirus infection in neonates transfused with washed red blood cells. Am J Dis Child 141: 416, 1987.PubMedGoogle Scholar
  82. 82.
    Tolkoff-Rubin NA, Rubin RH, Keller EE, Baker GP, Stewart JA, Hirsch MS. Cytomegalovirus infection in dialysis patients and personnel. Ann Intern Med 89: 625, 1978.PubMedCrossRefGoogle Scholar
  83. 83.
    Betts RF, Cestero RV, Freeman RB, Douglas RG Jr. Epidemiology of cytomegalovirus infection in end stage renal disease. J Med Virol 4: 89, 1979.PubMedCrossRefGoogle Scholar
  84. 84.
    Adler SP, Lawrence LT, Baggett J, Biro V, Sharp DE. Prevention of transfusion-associated cytomegalovirus infection in very lowbirth-weight infants using frozen blood and donors seronegative for cytomegalovirus. Transfusion 24: 333, 1984.PubMedCrossRefGoogle Scholar
  85. 85.
    Brady MT, Milam JD, Anderson DC, Hawkins EP, Speer ME, Seavy D, et al. Use of deglycerolized red blood cells to prevent posttransfusion infection with cytomegalovirus in neonates. J Infect Dis 150: 334, 1984.PubMedCrossRefGoogle Scholar
  86. 86.
    Taylor BJ, Jacobs RF, Baker RL, Moses EB, McSwain BE, Shulman G. Frozen deglycerolyzed blood prevents transfusion-acquired cytomegalovirus infections in neonates. Pediatr Infect Dis 5: 188, 1986.PubMedCrossRefGoogle Scholar
  87. 87.
    Verdonck LF, de Graan-Hentzen YC, Dekker AW, Mudde GC, de Gast GC. Cytomegalovirus seronegative platelets and leukocyte-poor red blood cells from random donors can prevent primary cytomegalovirus infection after bone marrow transplantation. Bone Marrow Transplant 2: 73, 1987.PubMedGoogle Scholar
  88. 88.
    Murphy MF, Grint PC, Hardiman AE, Listet TA, Waters AH. Use of leukocyte-poor blood components to prevent primary cytomegalovirus (CMV) infection in patients with acute leukemia. Br J Haematol 70: 253, 1988.PubMedCrossRefGoogle Scholar
  89. 89.
    Gilbert GL, Hayes K, Hudson IL, James J. Prevention of transfusion-acquired cytomegalovirus infection in infants by blood filtration to remove leucocytes. Neonatal Cytomegalovirus Infection Study Group. Lancet 1: 1228, 1989.PubMedCrossRefGoogle Scholar
  90. 90.
    De Graan-Hentzen YCE, Gratama JW, Mudde GC, et al. Prevention of primary cytomegalovirus infection in patients with hematologic malignancies by intensive white cell depletion of blood products. Transfusion 29: 757, 1989.PubMedCrossRefGoogle Scholar
  91. 91.
    Bowden RA, Sayers MH, Cays M, Slichter SJ. The role of blood product filtration in the prevention of transfusion associated cytomegalovirus (CMV) infection after marrow transplant (Abstract). Transfusion 29: 57S, 1989.Google Scholar
  92. 92.
    DeWitte T, Schattenberg A, van Dijk BA, Galama J, Olthuis H, Van der Meer JW, Kunst VA. Prevention of primary cytomegalovirus infection after allogeneic bone marrow transplantation by using leukocyte-poor random blood products from cytomegalovirus-unscreened blood-bank donors. Transplantation 50: 964, 1990.CrossRefGoogle Scholar
  93. 93.
    Bowden RA, Slichter SJ, Sayers MH, Mori M, Cays MJ, Meyers JD. Use of leukocyte-depleted platelets and cytomegalovirusseronegative red blood cells for prevention of primary cytomegalovirus infection after marrow transplant. Blood 78: 246, 1991.PubMedGoogle Scholar
  94. 94.
    Eisenfield L, Silver H, McLaughlin J, et al. Prevention of transfusion-associated cytomegalovirus infection in neonatal patients by the removal of white cells from blood. Transfusion 32: 205, 1992.CrossRefGoogle Scholar
  95. 95.
    Bowden RA, Cays M, Schoch G, et al. Comparison of filtered blood (FB) to seronegative blood products (SB) for prevention of cytomegalovirus (CMV) infection after marrow transplant. Blood 82: 204a, 1993.Google Scholar
  96. 96.
    Morrow JF, Braine HG, Kickler TS, et al. Septic reactions to platelet transfusions. A persistent problem. JAMA 266: 555, 1991.PubMedCrossRefGoogle Scholar
  97. 97.
    Barrett BB, Andersen JW, Anderson KC. Strategies for the avoidance of bacterial contamination of blood components. Transfusion 33: 228, 1993.PubMedCrossRefGoogle Scholar
  98. 98.
    Pietersz RNI, Reesink HW, Pauw W, Dekker WJA, Buisman L. Prevention of Yersinia enterocolitica growth in red-bloodcell concentrates. Lancet 340: 755, 1992.PubMedCrossRefGoogle Scholar
  99. 99.
    Högman CF, Gong J, Hambraeus A, Johansson CS, Eriksson L. The role of white cells in the transmission of Yersinia enterocolitica in blood components. Transfusion 32: 654, 1992.PubMedCrossRefGoogle Scholar
  100. 100.
    Kim DM, Brecher ME, Bland LA, Estes TJ, McAllister SK, Aguero SM, Carmen RA, Nelson EJ. Prestorage removal of Yersinia enterocolitica from red cells with white cell-reduction filters. Transfusion 32: 658, 1992.PubMedCrossRefGoogle Scholar
  101. 101.
    Wenz B, Burns ER, Freundlich LF. Prevention of growth of Yersinia enterocolitica in blood by polyester fiber filtration. Transfusion 32: 663, 1992.PubMedCrossRefGoogle Scholar
  102. 102.
    Buchholz DH, AuBuchon JP, Snyder EL, et al. Removal of Yersinia enterocolitica from AS-1 red cells. Transfusion 32: 667, 1992.PubMedCrossRefGoogle Scholar
  103. 103.
    Nusbacher J. Yersinia enterocolitica and white cell filtration. Transfusion 32: 597, 1992.PubMedCrossRefGoogle Scholar
  104. 104.
    Högman CF, Gong J, Eriksson L, Hambraeus A, Johansson CS. White cells protect donor blood against bacterial contamination. Transfusion 31: 620, 1991.PubMedCrossRefGoogle Scholar
  105. 105.
    See Ali and Blajchman as referenced in Freedman JJ, Blajchman MA, McCombie N. Canadian Red Cross Society Symposium on Leukodepletion: report on proceedings. Transf Med Rev 8: 1, 1994.CrossRefGoogle Scholar
  106. 106.
    Anderson KC, Weinstein HJ. Transfusion-associated graft-versus-host disease. N Engl J Med 323: 315, 1990.PubMedCrossRefGoogle Scholar
  107. 107.
    Deeg HJ, Graham TC, Gerhard-Miller L, et al. Prevention of transfusion-induced graft-versus-host disease in dogs by ultraviolet irradiation. Blood 74: 2592, 1989.PubMedGoogle Scholar
  108. 108.
    Rubinstein A, Radl J, Cottier H, Rossi E, Gugler E. Unusual combined immunodeficiency syndrome exhibiting kappa-IgD paraproteinemia, residual gut immunity and graft-versus-host reaction after plasma infusion. Acta Paediatr Scand 62: 365, 1973.PubMedCrossRefGoogle Scholar
  109. 109.
    Dzik WH, Jones KS. The effects of gamma irradiation versus white cell reduction on the mixed lymphocyte reaction. Transfusion 33: 493, 1993.PubMedCrossRefGoogle Scholar
  110. 110.
    Akahoshi M, Takanashi M, Masuda, M, et al. A case of transfusion-associated graftversus-host disease not prevented by white cell-reduction filters. Transfusion 32: 169, 1992.PubMedCrossRefGoogle Scholar
  111. 111.
    Klein HG. Transfusion in transplant patients: the good, the bad, and the ugly. J Heart Lung Transplant 12: S7, 1993.PubMedGoogle Scholar
  112. 112.
    Blajchman MA, Bardossy L, Carmen R, Sastry A, Singai DP. Allogeneic blood transfusion-induced enhancement of tumor growth: two animal models showing amelioration by leukodepletion and passive transfer using spleen cells. Blood 81: 1880, 1993.PubMedGoogle Scholar
  113. 113.
    Lopez J, Fernandez-Villalta MJ, GomezReino F, Fernandez-Ranada JM. Absence of graft-versus-leukemia effect of standard hemotherapy in patients with acute myeloblastic leukemia. Transfusion 30: 191, 1990.PubMedCrossRefGoogle Scholar
  114. 114.
    Norol F, Parquet N, Kuentz M, et al. Absence of graft-versus-leukaemia (GVL) effect by leucocytes transfused: a prospective randomized trial in acute myeloid leukaemia (AML) patients. Br J Haem 78: 591, 1991.CrossRefGoogle Scholar
  115. 115.
    Rebulla P, Pappalettera M, Barbui T, et al. Duration of first remission in leukaemic recipients of leucocyte-poor blood components. Br J Haem 75: 441, 1990.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • John P. Miller
  • Paul D. Mintz

There are no affiliations available

Personalised recommendations