Skip to main content

The Role of Leukocyte Depletion in the Prevention of Reperfusion Injury Associated with Open Heart Surgery

  • Chapter
  • 74 Accesses

Part of the book series: Medical Intelligence Unit ((MIUN))

Summary

Reperfusion injury (RI) is a term used to describe tissue injury associ-ated with revascularization after a period of ischaemia. This phenom-enon may occur in open heart surgery and result in considerable morbidity. The mechanism of RI is thought to be an interaction between activated leukocytes, and reperfused endothelium, resulting in the release of variety of substances, such as activated oxygen species or proteolytic enzymes, with potential for parenchymal damage.

Leukocyte activation occurs during cardiopulmonary bypass and strategies to minimize RI include minimizing organ underperfusion, improving the surfaces of the extracorporeal circuit so as to reduce cellular and protein activation, pharmacological agents such as steroids, radical scavengers or enzymes which remove activated oxygen species and leukodepletion of re-infused blood.

Leukodepletion of re-infused autologous blood or transfused allogeneic blood has become possible using in-line filtration. Leukodepletion of autologous blood can be achieved in both the extracorporeal perfusion circuit and the cardioplegia delivery system. Several early clinical studies indicated benefit of this approach in reducing postoperative morbidity, length of stay in the intensive care unit (ITU/ICU) and ventilation times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gorlick DL, Ortolano GA. Leukocyte Depletion and Implications for the Prevention of Reperfusion Injury. Proc AACP 13: 154, 1992.

    Google Scholar 

  2. Odeh M. The role of reperfusion induced injury in the pathogenesis of the crush syndrome. N. Engl J Med 324: 1417, 1991.

    Article  PubMed  CAS  Google Scholar 

  3. Newman S. The incidence and nature of neuropsychological morbidity following cardiac surgery: Perfusion 4: 93, 1989.

    Google Scholar 

  4. Campbell DE, Raskin SA. Cerebral dysfunction after cardiopulmonary bypass: Aetiology, manifestations and interventions. Perfusion 5: 251, 1990.

    Google Scholar 

  5. Kirklin JK, Blackstone EH, Kirklin JW. Cardiopulmonary bypass: Studies on its damaging effects: Blood Purif 5: 168, 1987.

    Article  PubMed  CAS  Google Scholar 

  6. Taylor KM. Pathophysiology of brain damage during open-heart surgery: Tex Heart Inst J 13: 91, 1986.

    PubMed  CAS  Google Scholar 

  7. Kirklin JK. The postperfusion syndrome: Inflammation and the damaging effects of cardiopulmonary bypass. In: Cardiopulmonary Bypass: Current Concepts and Controversies, Tinkler JH (ed), Philadelphia: WB Saunders Co. 131, 1989.

    Google Scholar 

  8. Cleland J, Pluth JR, Tauxe WN, Kirklin JW. Blood volume and body fluid compartment changes soon after closed and open intracardiac surgery. J Thorac Cardiovasc Surg 52: 698, 1966.

    PubMed  CAS  Google Scholar 

  9. Angell-James JE, de Burgh Daly M. Effects of graded pulsatile pressure on the reflex vasomotor responses elicited by changes of mean pressure in the perfused carotid sinus-aortic arch regions of the dog. J Physiol 214: 51, 1971.

    PubMed  CAS  Google Scholar 

  10. Bain WH. Measurement and monitoring for cardiopulmonary bypass. In: Cardiopulmonary Bypass, Principals and Management. KM. Taylor ed. Chapman Hall Medical, London 1986.

    Google Scholar 

  11. Jacobs LA, Klopp EH, Seamone W, Topaz SR, Gott VL. Improved organ function during cardiac bypass with a roller pump modified to deliver pulsatile flow. J Thorac Cardiovasc Surg 58: 703, 1969.

    PubMed  CAS  Google Scholar 

  12. Royston D, Fleming JS, Desai JB, Westaby S, Taylor KM. Increased production of peroxidation products associated with cardiac operations. Evidence for free radical generation. J Thorac Cardiovasc Surg; 91: 759, 1986.

    PubMed  CAS  Google Scholar 

  13. Craddock PR, Fehr J, Brigham KL, et al. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 296: 769, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Colman RW. Platelet and neutrophil activation in cardiopulmonary bypass: Ann Thorac Surg 49: 32, 1990.

    Article  PubMed  CAS  Google Scholar 

  15. Stahl RF, Fischer CA, Kuchich U, Weinbaum G, Warsaw DS, et al. Effects of simulated extracorporeal circulation on human leukocyte elastase release, superoxide generation, and procoagulant activity: J Thorac Cardio-vasc Surg 101: 230, 1991.

    CAS  Google Scholar 

  16. Herzlinger GA. Activation of complement by polymers in contact with blood. In: Szycher M ed. Blood Compatible Polymers, Metals, and Composites. Lancaster, PA: Technomic, 83:89, 1983.

    Google Scholar 

  17. Chenoweth DE. Complement activation produced by biomaterials. Trans Am Soc Artif Intern Organs 32: 226, 1986.

    CAS  Google Scholar 

  18. Leher RI, Ganz T. Antimicrobial polypeptides of human neutrophils. Blood 76: 2169, 1990.

    Google Scholar 

  19. Lunec J. Free radicals: Their involvement in desease pocesses. Ann Clin Biochem 27: 173, 1990.

    PubMed  CAS  Google Scholar 

  20. Breda MA, Drinkwater DC, Laks H., et al. Prevention of reperfusion injury in the neonatal heart with leukocyte-depleted blood. J Thorac Cardiovasc Surg 97: 654, 1988.

    Google Scholar 

  21. Weiss SJ. Tissue destrucion by neutrophils. N Engl J Med 320: 365, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Royston D. Blood cell activation. Sem Thorac Cardiovasc Surg 2: 341, 1990.

    CAS  Google Scholar 

  23. Warren JS, Ward PA. Review: Oxidative injury to the vascular endothelium. Am J Med Sci 292: 97, 1986.

    Google Scholar 

  24. Schmid-Schonbein GW, Skalak R, Simon SI, Engler RL. The interaction between leukocytes and endothelium in vivo. Ann NY Acad Sci 516: 348, 1987.

    Article  PubMed  CAS  Google Scholar 

  25. Taylor KM. Pulsatile cardiopulmonary bypass. A review. J Cardiovasc Surg 22: 561, 1981.

    CAS  Google Scholar 

  26. Many M, Soroff HS, Birtwell WC, Giron F, Wise H, Detering RA. The physiologic role of pulsatile and non-pulsatile blood flow. II Effects on renal function. Arch Surg 95: 762, 1967.

    Article  PubMed  CAS  Google Scholar 

  27. Wright G, Sanderson JM. Brain damage and mortality in dogs following pulsatile and non-pulsatile blood flows in extracorporeal circulation. Thorax 27: 738, 1972.

    Article  PubMed  CAS  Google Scholar 

  28. Shepard RB, Kirklin JW. Relation of pulsatile flow to oxygen consumption and other variables during cardiopulmonary bypass. J Thorac Cardiovasc Surg 58: 694, 1969.

    PubMed  CAS  Google Scholar 

  29. Taylor KM, Bain WH, Maxted KJ, Hutton MH, Mittra S, Russell M. A comparitive study of pulsatile and non-pulsatile cardiopulmonary bypass in 325 patients. Proc Eur Soc Artif VI: 238, 1979.

    Google Scholar 

  30. Fried DW, Wilgus MA, Weiss SJ. The proposed use of a “screening test” to assess oxygenator performance. Perfusion 8: 299, 1993.

    Article  PubMed  CAS  Google Scholar 

  31. Gourlay T, Aslam M, Fleming J, Taylor KM. Evaluation of the Sorin Monolyth membrane oxygenator. Perfusion 5: 209, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Gourlay T, Fleming J, Taylor KM. Evaluation of a range of extracorporeal membrane oxygenators. Perfusion 5: 117, 1990.

    Article  PubMed  CAS  Google Scholar 

  33. Pradham MJ, Fleming JS, Nkere UU, Arnold J, Wildervuur CRH, Taylor KM. Clinical experience with heparin coated cardiopulmonary bypass circuits. Perfusion 6; 235, 1991.

    Article  Google Scholar 

  34. Videm V, Svennevig JL, Fosse E, et al. Reduced complement activation with heparin coated oxygenator and tubing in coronary bypass surgery-a clinical study. J Extracorp Technol (in press)

    Google Scholar 

  35. Videm V, Mollnes TE, Garred P, Svennevig JL. Biocompatibility of extracorporeal circulation: in vitro comparisons of heparin coated and uncoated oxygenator circuits. J Thorac Cardiovasc Surg 101: 654, 1991.

    PubMed  CAS  Google Scholar 

  36. Fuller RW, Kelsey CR, Cole PJ, Dollery CT, MacDermot J. Dexamethasone inhibits the production of thromboxane B2 leukotriene B4 by human alveolar and peritoneal macrophanges in culture. Clinical Science 67: 653, 1984.

    PubMed  CAS  Google Scholar 

  37. Jansen NJG, van Oeveren W, van de Broek L, Oudemans van Straaten HM, et al. Inhibition of the reperfusion phenomena in cardiopulmonary bypass by dexamethasone: J Thorac Cardiovasc Surg; 102: 515.

    Google Scholar 

  38. Ohtani M, Matsuda H, Shirakura R, Sawa Y, Matsuwaka R, Kuki S, Nakano S, Kawashima Y. Attenuation of pulmonary leukocyte sequestration during extracorporeal circulation by a new c-AMP phosphodiesterase inhibitor. Trans Am Soc Artif Intern Organs 34; 761, 1988.

    CAS  Google Scholar 

  39. Turrens JF, Crapo JD, Freeman BA. Protection against oxygen toxicity by intravenous injection of liposome-entrapped catalase and superoxide dismutase. J Clin Invest 73: 87, 1984.

    Article  PubMed  CAS  Google Scholar 

  40. Fosse E, Mollnes TE, Osterud A, Aasen AO: Effects of meyhylprednisolone on comple-ment activation and leukocyte counts during cardiopulmonary bypass. Scan J Thor Cardiovasc Surg 21: 255, 1987.

    Article  CAS  Google Scholar 

  41. Jansen NJG, van Oeveren W, Kazatchkine MD, Wildervuur CRH. Methylprednisolone inhibits granulocytopenia induced by infusion of complement activated serum but not complement activated plasma in rabbits. Biomaterials 10: 617, 1989.

    Article  PubMed  CAS  Google Scholar 

  42. Jansen NJG, van Oeveren W, van Vliet M, Stoutenbeek CP, Eijsman L, Wildervuur CRH. The role of different types of corticosteroids on the cellular and plasmatic systems in cardiopulmonary bypass. Eur J Cardio Thorac Surg 5: 211, 1991.

    Article  CAS  Google Scholar 

  43. Jansen NJG, van Oeveren W, Hoiting BH, Wildervuur CRH. Methylprenisolone prophylaxis protects against endotoxin induced death in rabbits. Inflammation 15: 91, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Andersen LW, Baek L, Thomson BS, Rasmussen JP. Effect of methylprednisolone on endotoxiaemia and complement activation during cardiac surgery. J Cardiovasc Anaesth 3: 544, 1989.

    CAS  Google Scholar 

  45. Detterbeck F, Kron E, Paull D, et al. Oxygen free radical scavengers decrease reperfusion injury in lung transplantation. Southern Thoracic Surgical Association. 36th Annual Meeting 1989.

    Google Scholar 

  46. Ferriera R, Burgos M, Llesuir S, et al. Reduction of reperfusion injury with mannitol cardioplegia. Ann Thorac Surg 48: 77, 1989.

    Article  Google Scholar 

  47. Breda M, Drinkwater D, Laks H, et al. Prevention of reperfusion injury in the neonatal heart with leukocyte depleted blood. J Thorac Cardiovasc Surg 97: 654, 1989.

    PubMed  CAS  Google Scholar 

  48. Hall T, Breda M, Baumgartner W, et al. The role of leukocyte depletion in reducing injury to the lung after hypothermic ischaemia. Current Surgery 44: 137, 1990.

    Google Scholar 

  49. Schueler S, Hatanaka M, Bando K, et al. Twenty-four hour lung preservation with donor core cooling and leukocyte depletion in a bilateral lung transplantation model. Surgical Forum 41: 405, 1990.

    Google Scholar 

  50. Bando K, Schueler S, Cameron DE, et al. Twelve hour cardiopulmonary preservation using donor core cooling, leukocyte depletion, and liposomal superoxide dismutase. J. Heart Lung Transplant 10: 304, 1991.

    PubMed  CAS  Google Scholar 

  51. Bando K, Pillai R, Cameron DE, et al. Leukocyte depletion ameliorates free radical mediated lung injury after cardiopulmonary bypass. J Thorac Cardiovasc Surg 99: 873, 1990.

    PubMed  CAS  Google Scholar 

  52. Bando K, Teramoto S, Tago M, et al. Successful extended hypothermic cardiopulmonary preservation for heart lung transplantation. J Thorac Cardiovasc Surg 98: 137, 1989.

    PubMed  CAS  Google Scholar 

  53. Pillai R, Bando K, Schueler S, et al. Leukocyte depletion results in excellent heart-lung function after 10 hour storage. Ann Thorac Surg 211, 1990.

    Google Scholar 

  54. Gourlay T, Fleming J, Taylor KM. Laboratory evaluation of the Pall LG6 leukocyte depleting arterial line filter. Perfusion 7: 131, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Gourlay T, Fleming J, Taylor KM. The effects of pulsatile flow on the leukocyte depleting qualities of the Pall LG6 leukocyte depleting arterial line filter: A laboratory investigation. Perfusion 7: 227, 1992.

    Article  PubMed  CAS  Google Scholar 

  56. Allen SM, Pagano D, Bonser RS. Preliminary clinical evaluation of the Pall LeukoGuard 6 (LG6) leukocyte depleting filter. Proc Scan Soc Extracorp Tech; Tampere, Finland, 1993.

    Google Scholar 

  57. Palanzo DA, Manley NJ, Montesano RM, et al. Clinical evaluation of the LeucoGuard (LG6) arterial line filter in routine open heart surgery. Perfusion 8: 489, 1993.

    Article  Google Scholar 

  58. Gu YJ, Obster R, Gallandat RCG, Eijgelaar A, van Oeveren W. Leukocyte depletion reduces the postoperative inflammatory response in patients following open heart surgery. Intensive Care Med 18: 851, 1992.

    Google Scholar 

  59. Gu YJ. Inhibition of the inflammatory response initiated during cardiopulomonary bypass. (PhD Thesis). Gronigen, The Neth-erlands: University Hospital, 1992.

    Google Scholar 

  60. Pearl J, Drinkwater DC, Laks H, Caponya ER, Gates RN. Leukocyte-depleted reperfusion of transplanted human hearts. A randomised, double blind clinical trial. J Heart Lung Transplant 11: 1082, 1992.

    PubMed  CAS  Google Scholar 

  61. Fleming A. A simple method of removing leukocytes from blood. Br J Exp Path 7: 281, 1928.

    Google Scholar 

  62. Roe JA. Clinical advantages associated with the use of blood filters. Care Crit III 8: 146, 1992.

    Google Scholar 

  63. Blumberg N, Triulzi DJ, Heal JM. Transfusion induced immunomodulation and its clinical consequences. Trans Med Rev 4: 24, 1990.

    Article  CAS  Google Scholar 

  64. Dellinger EP, Oreskovich MR, Wertz MJ, Hamasaki V, Lennard ES. Risk of infection following laparotomy for penetrating abdominal injury. Arch Surg 119: 20, 1984.

    Article  PubMed  CAS  Google Scholar 

  65. Ottino G, De Paulis R, Pasini S, et al. Major sternal wound infection after open heart surgery: a multivariate analysis of risk factors in 2,579 consecutive operative procedures. Ann Thorac Cardiovasc Surg 44: 173, 1987.

    CAS  Google Scholar 

  66. Tartter PI. Blood transfusion and infectious complications following colorectal cancer surgery. Br J Surg 75: 789, 1988.

    Article  PubMed  CAS  Google Scholar 

  67. Graves TA, Cioffi WG, Mason AD, McManus WF, Pruitt BA. Relationship of transfusion and infection in a burn population. J Trauma 29: 948, 1989.

    Article  PubMed  CAS  Google Scholar 

  68. Jensen LS, Andersen AJ, Christiansen PM, et al. Postoperative infection and natural killer cell function following blood transfusion in patients undergoing elective colorectal surgery. Br J Surg 79: 513, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gourlay, T., Taylor, K.M. (1995). The Role of Leukocyte Depletion in the Prevention of Reperfusion Injury Associated with Open Heart Surgery. In: Clinical Benefits of Leukodepleted Blood Products. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-26538-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-26538-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-1-57059-122-8

  • Online ISBN: 978-3-662-26538-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics