Skip to main content

Experimental Carcinogenesis, Exocrine Pancreas, Hamster and Rat

  • Chapter
Book cover Digestive System

Part of the book series: Monographs on Pathology of Laboratory Animals ((LABORATORY,volume 3))

Abstract

Ten years have passed since rodent models of experimental pancreatic carcinogenesis were last reviewed in the first edition of Digestive System in this monograph series. At the time of that review (Scarpelli et al. 1985), it was clear that the exocrine pancreas of rodent species was susceptible to a variety of chemical carcinogens and that these might be models of utility for pathogenetic and other analyses of the carcinogenic process. A remarkable feature of these models is that in various rodent species different types of exocrine cells appear to be susceptible to the neoplastic transformation. For example, in the rat and guinea pig, the majority of tumors induced are acinar cell adenomas and carcinomas, as contrasted to the hamster, in which almost exclusively ductal adenocarcinomas develop. In mice, on the other hand, both acinar cell carcinomas and duct-like carcinomas have been obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrén-Sandberg A (1989) Androgen influence on exocrine pancreatic cancer. Int J Pancreatol 4:363–369

    PubMed  Google Scholar 

  • Arias AE, Bendayan M (1993) Differentiation of pancreatic acinar cells into duct-like cells in vitro. Lab Invest 69:518–530

    PubMed  CAS  Google Scholar 

  • Bakkevold KE, Pettersen A, Amesjo B, Espehaug B (1990) Tamoxifen therapy in unresectable adenocarcinoma of the pancreas and the papilla of vater. Br J Surg 77:725–730

    Article  PubMed  CAS  Google Scholar 

  • Barton C, Hall PA, Hughes CM, Gullick WJ, Lemoine NR (1991) Transforming growth factor α and epidermal growth factor in human pancreatic cancer. J Pathol 163:111–116

    Article  PubMed  CAS  Google Scholar 

  • Bell RH Jr, Kuhlmann ET, Jensen RT, Longnecker DS (1992) Overexpression of cholecystokinin receptors in azaserine-induced neoplasms of the rat pancreas. Cancer Res 52:3295–3299

    PubMed  CAS  Google Scholar 

  • Berenblum I, Shubik P (1947) A new quantitative approach to the study of the stages of chemical carcinogenesis in the mouse’s skin. Br J Cancer 1:383–391

    Article  PubMed  CAS  Google Scholar 

  • Birt DF, Pour PM (1987) Pancreatic cancer enhancement in the hamster model by diets high in fat and/or protein. In: Scarpelli DG, Reddy JK, Longnecker DS (eds) Experimental pancreatic carcinogenesis. CRC Press, Boca Raton, FL, pp 175–186

    Google Scholar 

  • Birt DF, Stepan KR, Pour PM (1983) Interaction of dietary fat and protein on pancreatic carcinogenesis in Syrian golden hamsters. J Natl Cancer Inst 71:355–360

    PubMed  CAS  Google Scholar 

  • Birt DF, Julius AD, White LT, Pour PM (1989) Enhancement of pancreatic carcinogenesis in hamsters fed a high-fat diet ad libitum and at a controlled calorie intake. Cancer Res 49:5848–5851

    PubMed  CAS  Google Scholar 

  • Birt DF, Julius AD, Dwork E, Hanna T, White LT, Pour PM (1990) Comparison of the effects of dietary beef tallow and corn oil on pancreatic carcinogenesis in the hamster model. Carcinogenesis 11:745–748

    Article  PubMed  CAS  Google Scholar 

  • Bos JL (1989) ras oncogene in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  • Buscail L, Delesque N, Estève JP, Saint-Laurent N, Prats H, Clerc P, Rofferecht P, Bell Gl, Liebow C, Schally AV, Voysse N, Susini C (1994) Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc Natl Acad Sci USA 91:2315–2319

    Article  PubMed  CAS  Google Scholar 

  • Cerny WL, Marigold KA, Scarpelli DG (1990) Activation of K-ras in transplantable pancreatic ductal adenocarcinomas of Syrian golden hamsters. Carcinogenesis 11:2075–2079

    Article  PubMed  CAS  Google Scholar 

  • Cerny WL, Marigold KA, Scarpelli DG (1992) K-ras mutation is an early event in pancreatic duct carcinogenesis in the Syrian golden hamster. Cancer Res 52:4507–4513

    PubMed  CAS  Google Scholar 

  • Chang K-W, Laconi S, Mangold KA, Hubchak S, Scarpelli DG (1995) Multiple genetic alterations in hamster pancreatic ductal adenocarcinomas. Cancer Res 55:2560–2568

    PubMed  CAS  Google Scholar 

  • DeLisle RC, Logsdon CD (1990) Pancreatic acinar cells in culture: expression of acinar and ductal antigens in a growth-related manner. Eur J Cell Biol 51:64–75

    CAS  Google Scholar 

  • Douglas BR, Woutersen RA, Jansen JB, de Jong AJL, Rovati LC, Lamers CB (1989) Modulation by CR-1409 (Lorglumide), a cholecystokinin receptor antagonist, of trypsin inhibitor-enhanced growth of azaserine-induced putative preneoplastic lesions in rat pancreas. Cancer Res 49:2438–2441

    PubMed  CAS  Google Scholar 

  • Falk RT, Pickle LW, Fontham ET, Correa P, Fraumeni JF Jr (1988) Life-style risk factors for pancreatic cancer in Louisiana: a case control study. Am J Epidemiol 128:324–336

    PubMed  CAS  Google Scholar 

  • Farber E (1984) The multistep nature of cancer development. Cancer Res 44:4217–4223

    PubMed  CAS  Google Scholar 

  • Farrow DC, Davis S (1990) Diet and the risk of pancreatic cancer in men. Am J Epidemiol 132:423–431

    PubMed  CAS  Google Scholar 

  • Fekete M, Zalatnai A, Comaru-Schally AM, Schally AV (1989) Membrane receptors for peptides in experimental and human pancreatic cancers. Pancreas 4:521–528

    Article  PubMed  CAS  Google Scholar 

  • Finlay CA (1993) The mdm-2 oncogene can overcome wild type p53 suppression of transformed cell growth. Mol Cell Biol 13:301–306

    PubMed  CAS  Google Scholar 

  • Fölsch UR, Mustroph D, Schafmayer A, Becker HD, Creutzfeld W (1984) Elevated CCK plasma concentrations during acute and chronic feeding of soybean flour. Digestion 30:88

    Google Scholar 

  • Fuji H, Egami H, Chaney W, Pour P, Pelling J (1990) Pancreatic ductal adenocarcinomas induced in Syrian hamsters by N-nitrosobis(2-oxopropyl)amine contain a c-K-ras oncogene with a point-mutated codon 12. Mol Carcinog 3:296–301

    Article  Google Scholar 

  • Gao X, Honn KV, Grignon D, Sake W, Chen YQ (1993) Frequent loss of expression and loss of heterozygosity of the putative tumor suppressor gene DCC in prostatic carcinomas. Cancer Res 53:2723–2727

    PubMed  CAS  Google Scholar 

  • Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH (1991) The retinoblastoma gene product regulates progression through the Gl phase of the cell cycle. Cell 67:293–302

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt MS, Bennett WP, Hollsteins M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    PubMed  CAS  Google Scholar 

  • Hall PA, Lemoine NR (1992) Rapid acinar to ductal trans-differentiation in cultured human exocrine pancreas. J Pathol 166:97–103

    Article  PubMed  CAS  Google Scholar 

  • Hedrick L, Cho KR, Fearon ER, Wu TC, Kinzler KW, Voglstein B (1994) The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev 8:1174–1183

    Article  PubMed  CAS  Google Scholar 

  • Hirayama T (1972) Smoking in relation to the death rates of 265,118 men and women in Japan. A report on five years of follow-up. Presented at the American Cancer Society’s 14th Science Writers Seminar. Clearwater Beach FL

    Google Scholar 

  • Hohne MW, Halatch M-E, Kahl GF, Weinel RJ (1992) Frequent loss of expression of the potential tumor suppressor gene DCC in ductal pancreatic adenocarcinoma. Cancer Res 52:2616–2619

    PubMed  CAS  Google Scholar 

  • Howe GR, Jain M, Miller AB (1990) Dietary factors and risk of pancreatic cancer: results of a Canadian population-based case-control study. Int J Cancer 45:604–608

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Boynton RF, Blount PL, Silverstein RJ, Yin J, Tong Y, McDaniel TK, Newkirk C, Resau JH, Sridhara R, Reid BJ, Meltzer SJ (1992) Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res 52:6525–6530

    PubMed  CAS  Google Scholar 

  • Hubchak S, Mangino MM, Reddy MK, Scarpelli DG (1990) Characterization of differentiated Syrian golden hamster pancreatic duct cells maintained in extended monolayer culture. In Vitro Cell Dev Biol 26:889–897

    Article  PubMed  CAS  Google Scholar 

  • Ide H, Subbarao V, Reddy JK, Rao MS (1993) Formation of ductular structures in vitro by pancreatic epithelial oval cells. Exp Cell Res 209:38–44

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa O, Ohigashi H, Imaoka S, Nakai I, Mitsuo M, Weide L, Pour P (1995) The role of pancreatic islers in experimental pancreatic carcinogenicity. Am J Pathol 147:1458–1464

    Google Scholar 

  • Jhappan C, Staahle C, Harkins RN, Fausto N, Smith GH, Merlino GT (1990) TGFalpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 61:1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Klijn JG, Hoff AM, Planting AS, Verweij J, Kok T, Lamberts SWJ, Portengen H, Foekens JA (1990) Treatment of patients with metastatic pancreatic and gastrointestinal tumours with the somatostatin analogue Sandostatin: a phase II study including endocrine effects. Br J Cancer 62:627–630

    Article  PubMed  CAS  Google Scholar 

  • Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    PubMed  CAS  Google Scholar 

  • Leblond CP (1964) Classification of cell populations on the basis of their proliferative behavior. Natl Cancer Inst Monogr 14:119–150

    PubMed  CAS  Google Scholar 

  • Lee WH, Bookstein R, Hong F, Young LJ, Shew JY, Lee EY (1987) Human retinoblastoma susceptibility gene; cloning, identification and sequence. Science 235:1394–1399

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1993) The tumor suppressor genes. Annu Rev Biochem 62:623–651

    Article  PubMed  CAS  Google Scholar 

  • Lhoste EF, Longnecker DS (1987) Effect of bombesin and caerulein on early stages of carcinogenesis induced by azaserine in the rat pancreas. Cancer Res 47:3273–3277

    PubMed  CAS  Google Scholar 

  • Lhoste EF, Roebuck BD, Longnecker DS (1988) Stimulation of the growth of azaserine-induced nodules in the rat pancreas by dietary camostate (FOY-305). Carcinogenesis 9:901–906

    Article  PubMed  CAS  Google Scholar 

  • Longnecker DS (1991) Hormones and pancreatic cancer. Int J Pancreatol 9:81–86

    PubMed  CAS  Google Scholar 

  • Longnecker DS, Roebuck BD, Yager JD, Lilja HS, Siegmund B (1981) Pancreatic carcinoma in azaserine-treated rats, induction, classification and dietary modulation of incidence. Cancer 47:1562–1572

    Article  PubMed  CAS  Google Scholar 

  • Longnecker DS, Faris RA, Bell RH Jr, Kuhlmann ET, Pettengill OS (1991) Ductal metaplasia in cell lines derived from an acinar cell carcinoma of the rat pancreas. Pancreas 6:710

    Google Scholar 

  • Lu L, Louie D, Owyang CA (1989) A cholecystokinin releasing peptide mediates feedback regulation of pancreatic secretion. Am J Physiol 256:G430–G435

    Google Scholar 

  • Makino T, Usuda N, Rao S, Reddy JK, Scarpelli DG (1990) Transdifferentiation of ductular cells into hepatocytes in regenerating hamster pancreas. Lab Invest 62:522–561

    Google Scholar 

  • Matsukara N, Suzuki K, Kawochi T, Aoyai M, Sugimura T, Kitaoka H, Numajiri H, Shirota A, Itaboshi M, Hirota T (1980) Distribution of marker enzymes and mucin in intestinal metaplasia in human stomach and relation of complete and incomplete types of metaplasia to minute gastric carcinomas. J Natl Cancer Inst 65:231–240

    Google Scholar 

  • McGuiness EE, Morgan RGH, Levison DA, Frape DL, Hopewood D, Wormsley KG (1980) The effects of long-term feeding of soya flour on the rat pancreas. Scand J Gastroenterol 15:497–502

    Article  Google Scholar 

  • McGuiness EE, Morgan RGH, Levison DA, Hopewood D, Wormsley KG (1981) Interaction of azaserine and raw soya flour on the rat pancreas. Scan J Gastroenterol 16:49–56

    Google Scholar 

  • Meijers M, Bruijntjes JP, Hendriksen EG, Woutersen RA (1989) Histogenesis of early preneoplastic lesions induced by N-nitrosobis-(2-oxopropyl)amine in exocrine pancreas of hamsters. Int J Pancreatol 4:127–137

    PubMed  CAS  Google Scholar 

  • Meijers M, van Garderen-Hoetmer A, Lamers CB, Rovati LC, Jansen JBMJ, Woutersen RA (1990) Role of cholecystokinin in the development of BOP-induced pancreatic lesions in hamsters. Carcinogenesis 11:2223–2226

    Article  PubMed  CAS  Google Scholar 

  • Meijers M, Woutersen RA, van Garderen-Hoetmer A, Bakker GH, de Jong FH, Foekens JA, Klijn JG (1991) Effects of castration, alone and in combination with amino glutethimide, on growth of preneoplastic lesions in exocrine pancreas of rats and hamsters. Carcinogenesis 12:1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Meijers M, Appel MJ, van Garderen-Hoetmer A, Lamers CB, Rovati LC, Jansen JB, Woutersen RA (1992a) Effects of cholecystokinin and bombesin on development of azaserine-induced pancreatic tumours in rats: modulation by the cholecystokin receptor antagonist lorgiumide. Carcinogenesis 13:1525–1528

    Article  PubMed  CAS  Google Scholar 

  • Meijers M, Visser CJ, Klijn JG, Lamberts SWJ, van Garderen-Hoetmer A, de Jong FH, Foekens JA, Woutersen RA (1992b) Effects of orchiectomy, alone or in combination with testosterone, and cyproterone acetate on exocrine pancreatic carcinogenesis in rats and hamsters. Int J Pancreatol 11:137–146

    PubMed  CAS  Google Scholar 

  • Miller DG (1980) On the nature of susceptibility to cancer. The presidential address. Cancer 46:1307–1318

    Article  PubMed  CAS  Google Scholar 

  • Mills PK, Beeson WL, Abbey DE, Fraser GE, Phillips RL (1988) Dietary habits and past medical history as related to fatal pancreas cancer risk among Adventists. Cancer 61:2578–2585

    Article  PubMed  CAS  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

    Article  PubMed  CAS  Google Scholar 

  • Oates PS, Morgan RG (1982) Pancreatic growth and cell turnover in the rat fed raw soya flour. Am J Pathol 108:217–224

    PubMed  CAS  Google Scholar 

  • Okamura E, Okoda M, Onoda N, Kamiya Y, Murakami H, Tsuhima T, Shizume K (1990) Insulin-like growth factor I and transforming growth factor a as autocrine growth factors in human pancreatic cancer cell growth. Cancer Res 50:103–107

    Google Scholar 

  • Parsa I, Longnecker DS, Scarpelli DG, Pour P, Reddy JK, Lefkowitz M (1985) Ductal metaplasia of human exocrine pancreas and its association with carcinoma. Cancer Res 45:1285–1290

    PubMed  CAS  Google Scholar 

  • Pour PM (1978) Islet cells as a component of pancreatic ductal neoplasms. 1. Experimental study: ductular cells including islet cell precursors and primary progenitor cells of tumors. Am J Pathol 90:295–316

    PubMed  CAS  Google Scholar 

  • Pour PM (1988) Mechanism of pseudoductular (tubular) formation during pancreatic carcinogenesis in the hamster model. An electron-microscopic and immune-histochemical study. Am J Pathol 130:335–344

    PubMed  CAS  Google Scholar 

  • Pour PM, Birt DF (1983) Modifying factors in pancreatic carcinogenesis in the hamster model. IV. Effects of dietary protein. J Natl Cancer Inst 71:347–353

    PubMed  CAS  Google Scholar 

  • Pour PM, Uchida E, Burnett DA, Steplewski Z (1986) Blood-group antigen expression during pancreatic cancer induction in hamsters. Int J Pancreatol 1:327–340

    PubMed  CAS  Google Scholar 

  • Pour PM, Lawson T, Hegelson S, Donnerly T, Stepan K (1988) Effect of cholecystokinin on pancreatic carcinogenesis in the hamster model. Carcinogenesis 9:597–601

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Subbarao V, Reddy JK (1986) Induction of hepatocytes in the pancreas of copper-depleted rats following copper repletion. Cell Differ 18:109–117

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Dwivedi RS, Subbarao V, Usman MI, Scarpelli DG, Nemali MR, Yeldandi A, Thangada S, Kumar S, Reddy JK (1988) Almost total conversion of pancreas to liver in the adult rat: a reliable model to study transdifferentiation. Biochem Biophys Res Commun 156:131–136

    Article  PubMed  CAS  Google Scholar 

  • Rao MS, Yeldandi AV, Reddy JK (1990) Stem cell potential of ductular and periductular cells. Cell Differ Dev 29:155–163

    Article  PubMed  CAS  Google Scholar 

  • Reddy BS, Sugie S (1988) Effect of different levels of omega-3 and omega-6 fatty acids on azoxymethane-induced colon carcinogenesis in F344 rats. Cancer Res 48:6642–6647

    PubMed  CAS  Google Scholar 

  • Reddy JK, Kanwar YS, Rao MS, Watanabe TK, Reddy MK, Parsa I, Longnecker DS, Tafuri S (1986) Duct-like morphogenesis of Longnecker pancreatic acinar carcinoma cells maintained in vitro on seminiferous tubular basement membrane. Cancer Res 46:347–354

    PubMed  CAS  Google Scholar 

  • Reddy JK, Rao MS, Yeldandi AV, Tan X, Dwivedi RS (1991) Pancreatic hepatocytes. An in vivo model for cell lineage in pancreas of adult rat. Dig Dis Sci 36:502–509

    Article  PubMed  CAS  Google Scholar 

  • Reubi JC, Horisberger U, Essed CE, Jeekel J, Klijn JG, Lamberts SWJ (1988) Absence of somatostatin receptors in human exocrine pancreatic adenocarcinomas. Gastroenterology 95:760–763

    PubMed  CAS  Google Scholar 

  • Rowlatt U (1967) Spontaneous epithelial tumours of the pancreas of mammals. Br J Cancer 21:82–107

    Article  PubMed  CAS  Google Scholar 

  • Sandgren EP, Quaife CJ, Paulovich AG, Palmiter RD, Brimster RL (1991) Pancreatic tumor pathogenesis reflects the causative genetic lesion. Proc Natl Acad Sci USA 88:93–97

    Article  PubMed  CAS  Google Scholar 

  • Scarpelli DG (1985) Editorial. Multipotent developmental capacity of cells in the adult animal. Lab Invest 52:331–333

    PubMed  CAS  Google Scholar 

  • Scarpelli DG, Rao MS (1981) Differentiation of regenerating pancreatic cells into hepatocyte-like cells. Proc Natl Acad Sci USA 78:2577–2581

    Article  PubMed  CAS  Google Scholar 

  • Scarpelli DG, Rao MS, Reddy JK (1985) Experimental carcinogenesis of exocrine pancreas: animal models, neoplasms, and current understanding of pathogenesis. In: Jones TC, Mohr U, Hunt RD (eds) Digestive system. Springer, Berlin Heidelberg New York, pp 224–238

    Chapter  Google Scholar 

  • Scarpelli DG, Rao MS, Reddy JK (1991) Are acinar cells involved in the pathogenesis of ductal adenocarcinoma of the pancreas? Cancer Cells 3:275–277

    PubMed  CAS  Google Scholar 

  • Scemama JL, DeVries L, Pradayrol L, Seva C, Tronchere H, Vaysse N (1989) Cholecystokinin and gastrin peptides stimulate ODC activity in a rat pancreatic cell line. Am J Physiol 256:G846–G850

    Google Scholar 

  • Schaeffer BK, Zurlo J, Longnecker DS (1990) Activation of c-K-ras not detectable in adenomas or adenocarcinomas arising in rat pancreas. Mol Carcinog 3:165–170

    Article  PubMed  CAS  Google Scholar 

  • Scheck AC, Coons SW (1993) Expression of the tumor suppressor gene DCC in human gliomas. Cancer Res 53:5605–5609

    PubMed  CAS  Google Scholar 

  • Seymour AB, Hruban RH, Redston M, Caldas C, Powell SM, Kinzler KW, Yeo CJ, Kern SE (1994) Allelotype of pancreatic adenocarcinoma. Cancer Res 54:2761–2764

    PubMed  CAS  Google Scholar 

  • Shepherd JG, Chen JR, Tsao M-S, Duguid WP (1993) Neoplastic transformation of cultured rat pancreatic duct epithelial cells by azaserine and streptozotocin. Carcinogenesis 14:1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Shibata D, Almoguera C, Forrester K, Dunitz J, Martin SE, Cosgrove MM, Perucho M, Amheim N (1990) Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res 50:1279–1283

    PubMed  CAS  Google Scholar 

  • Simon B, Weinel R, Hohne M, Watz U, Schmidt J, Kortner G, Arnold R (1994) Frequent alterations of the tumor suppressor genes p53 and DCC in human pancreatic carcinoma. Gastroenterology 106:1645–1651

    PubMed  CAS  Google Scholar 

  • Smith JJ, Derynck R, Korc M (1987) Production of transforming growth factor a in human pancreatic cancer cells: evidence for a superagonist autocrine cycle. Proc Natl Acad Sci USA 84:7567–7570

    Article  PubMed  CAS  Google Scholar 

  • Sumi C, Longnecker DS, Roebuck BD, Brinck-Johnsen T (1989a) Inhibitory effects of estrogen and castration on the early stage of pancreatic carcinogenesis in Fischer rats treated with azaserine. Cancer Res 49:2332–2336

    PubMed  CAS  Google Scholar 

  • Sumi C, Brinck-Johnsen T, Longnecker DS (1989b) Inhibition of a transplantable pancreatic carcinoma by castration and estradial administration in rats. Cancer Res 49:6687–6692

    PubMed  CAS  Google Scholar 

  • Szende B, Srkalovic G, Serially AV, Lapis K, Groot K (1990a) Inhibitory effects of analogs of leutinizing hormone-releasing hormone and somatostatin on pancreatic cancers in hamsters. Events which accompany tumor regression. Cancer 65:2279–2290

    Article  PubMed  CAS  Google Scholar 

  • Szende B, Srkalovic G, Groot K, Lapis K, Serially AV (1990b) Regression of nitrosamine-induced pancreatic cancers in hamsters treated with luteinizing hormone-releasing hormone antagonists or agonists. Cancer Res 50:3716–3721

    PubMed  CAS  Google Scholar 

  • Townsend CM, Singh P, Thompson SC (1986) Gastrointestinal hormones and gastrointestinal and pancreatic carcinomas. Gastroenterology 91:1002–1006

    PubMed  CAS  Google Scholar 

  • Uchino S, Tsuda H, Noguchi M, Yokota J, Terada M, Saito T, Kobayashi M, Sugimura T, Hirohashi (1992) Frequent loss of heterozygosity at the DCC locus in gastric cancer. Cancer Res 52:3099–3102

    PubMed  CAS  Google Scholar 

  • van Kranen HJ, Vermeuien E, Schoren L, Bax J, Woutersen RA, van Iersel P, van Kreije CF, Scherer E (1991) Activation of c-K-ras is frequent in pancreatic carcinomas of Syrian hamsters, but is absent in pancreatic tumors of rats. Carcinogenesis 12:1477–1482

    Article  PubMed  Google Scholar 

  • Varley JM, Armour J, Swallow JE, Jeffrey AJ, Ponder BA, Walker RA (1989) Retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumors. Oncogene 4:725–729

    PubMed  CAS  Google Scholar 

  • Verma AK, Ashendel CL, Boutwell RK (1980) Inhibition by prostaglandin synthesis inhibitors of the induction of epidermal orothine decarboxylase activity, the accumulation of prostaglandins, and tumor promotion caused by 12–0-tetradecanoylphorbol-13-acetate. Cancer Res 40:308–315

    PubMed  CAS  Google Scholar 

  • Woutersen RA, van Garderen-Hoetmer A, Longnecker DS (1987) Characterization of a 4-month protocol for the quantitation of BOP-induced lesions in hamster pancreas and its application in studying the effect of dietary fat. Carcinogenesis 8:833–837

    Article  PubMed  CAS  Google Scholar 

  • Wynder EL (1975) An epidemiological evaluation of the causes of cancer of the pancreas. Cancer Res 35:2228–2233

    PubMed  CAS  Google Scholar 

  • Wynder EL (1976) Nutrition and cancer. Fed Proc 35:1309–1315

    PubMed  CAS  Google Scholar 

  • Wynder EL, Mabuchi K, Maruchi N, Former JG (1973) Epidemiology of cancer of the pancreas. J Natl Cancer Inst 50:645–667

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Kaneko A, Chisaka N, Onoé T (1978) Appearance of intestinal type of tumor cells in hepatoma tissue induced by 3′-methyl-4-dimethylaminoazobenzene. Cancer Res 38:2753–2758

    PubMed  CAS  Google Scholar 

  • Zalatnai A, Serially AV (1989a) Treatment of N-nitrosobis(2-oxopropl)amine-induced pancreatic cancer in Syrian hamsters with D-Trp-6-LH-RH and somatostatin analog RC-160 microcapsules. Cancer Res 49:1810–1815

    PubMed  CAS  Google Scholar 

  • Zalatnai A, Serially A (1989b) Responsiveness of the hamster pancreatic cancer to treatment with microcapsules of D-Trp-6-LH-RH and somatostatin analog RC-160. Histological evidence of improvement. Int J Pancreatol 4:149–160

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scarpelli, D.G. (1997). Experimental Carcinogenesis, Exocrine Pancreas, Hamster and Rat. In: Jones, T.C., Popp, J.A., Mohr, U. (eds) Digestive System. Monographs on Pathology of Laboratory Animals, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-25996-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-25996-2_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-0-944398-75-3

  • Online ISBN: 978-3-662-25996-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics