Edelgas-Chemie pp 347-393 | Cite as

Edelgasreaktionen in der Strahlenchemie

  • Günther v. Bünau

Zusammenfassung

Vor etwa 40 Jahren wurde von Lind und Bardwell die Feststellung gemacht, daß die Geschwindigkeit der Bildung von Radiolyseprodukten bei der α-Bestrahlung verschiedener Gase durch Zusatz von Edelgasen stark erhöht werden konnte (92). Offenbar wurde ein großer Teil der vom Edelgas absorbierten Strahlungsenergie an das Substrat weitergegeben. Nach der spektroskopischen Entdeckung des angeregten He 2 * (63) war der Befund von Lind und Bardwell wahrscheinlich der erste Beweis für eine chemische Betätigung der Edelgase überhaupt. Lind und Bardwell sprachen damals von einem katalytischen Einfluß des Edelgases auf die Radiolyse. Heute würde man das Edelgas einen Sensibilisator genannt haben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Ausloos, P., and R. Gorden: Hydrogen formation in the y-radiolysis of ethylene. J. chem. Physics 36, 5 (1962).CrossRefGoogle Scholar
  2. 2.
    Ausloos, P., and R. Gorden, and S. G. Lias: Gas phase radiolysis of n-pentane. A study of the decomposition of the parent ion and neutral excited pentane molecule. J. chem. Physics 41, 3962 (1964).CrossRefGoogle Scholar
  3. 3.
    Ausloos, P., and R. Gorden, and S. G. Lias: Radiolysis of methane. J. chem. Physics 38, 2207 (1963).CrossRefGoogle Scholar
  4. 4.
    Ausloos, P., and R. Gorden, and S. G. Lias: Proton transfer reactions occurring in the gas phase radiolysis. J. chem. Physics (im Druck).Google Scholar
  5. 5.
    Ausloos, P., and R. Gorden, and S. G. Lias, and I. B. Sandoval: Gas-phase radiolysis of propane. Effect of pressure and added inert gases. Discuss. Faraday Soc. 36, 66 (1963).CrossRefGoogle Scholar
  6. 6.
    Ausloos, P., R. E. Rebbert, and S. G. Lias: Direct and inert gas sensitized radiolysis and photolysis of methane in the solid phase. J. chem. Physics 42, 540 (1965).CrossRefGoogle Scholar
  7. 7.
    Back, R. A., and D. C. Walker: Photochemistry in the photoionization region. I. Apparatus and techniques. J. chem. Physics 37, 2348 (1962).Google Scholar
  8. 8.
    Bardwell, D. C., and D. K. Naylor: Efficient transfer of energy from xenon energized by soft X-rays to polymerize admixed cyanogen or hydrogen cyanide which have higher ionization potentials. Radiat. Res. 11, 432 (1959).Google Scholar
  9. 9.
    Baxendale, J. H., and R. D. Sedgwick: Radiolysis of methanol vapour. Trans. Faraday Soc. 57, 2157 (1961).CrossRefGoogle Scholar
  10. 10.
    Beck, D.: Neutral fragments from hydrocarbons under electron impact. Discuss. Faraday Soc. 36, 56 (1963).CrossRefGoogle Scholar
  11. 11.
    Bertolini, G., M. Bettoni, and A. Bisi: Total ionization of a particles of Po in mixtures of gases. Physic. Rev. 92, 1586 (1953).CrossRefGoogle Scholar
  12. 12.
    Beutler, H., W. Eisenschimmel: Über Austausch von Energie und Elektronen zwischen neutralen Teilchen in der Resonanz bei Stößen zweiter Art. Z. physik. Chem. B 10, 89 (1930).Google Scholar
  13. 13.
    Biondi, M. A.: Diffusion, de-excitation, and ionization cross sections for metastable atoms. Physic. Rev. 88, 660 (1952).CrossRefGoogle Scholar
  14. 14.
    Borkowski, R. P., and P. J. Ausloos: Gas-phase radiolysis of isobutane. J. chem. Physics 38, 36 (1963).CrossRefGoogle Scholar
  15. 15.
    Borkowski, R. P., and P. J. Ausloos: Gas-phase radiolysis of n-butane. J. chem. Physics 39, 818 (1963).CrossRefGoogle Scholar
  16. 16.
    Bortner, T. E., and G. S. Hurst: Ionization of pure gases and mixtures of gases by 5-MeV alpha particles. Physic. Rev. 93, 1236 (1954).CrossRefGoogle Scholar
  17. 17.
    Bünau, G., and R. N. Schindler: Rare gas sensitized vacuum UV photolysis of some aliphatic hydrocarbons. J. chem. Physics (im Druck).Google Scholar
  18. 18.
    Bünau, G.: Über den Einfluß von Edelgasen auf die Strahlenchemie des Athans. Ber. Bunsenges. physik. Chem. 69, 16 (1965).Google Scholar
  19. 19.
    Cermak, V., and Z. Herman: Molecular dissociation in charge-transfer reactions. Nucleonics 19, Nr. 9, 106 (1961).Google Scholar
  20. 20.
    Cermak, V., and Z. Herman: Ionizing reactions of noble gas atoms in metastable states with polyatomic molecules. Collect. czechoslov. chem. Commun. 30, 169 (1965).Google Scholar
  21. 21.
    Chantry, P. J.: Afterglow measurements in xenon and xenon—water vapour mixtures. M. R. C. McDowell, Ed., „Atomic Collision Processes“, S. 565, North Holland Publ. Comp., Amsterdam 1964.Google Scholar
  22. 22.
    Chupka, W. A., and E. Lindholm: Dissociation of butane molecule ions formed in charge exchange collisions with positive ions. Ark. Fysik 25, 349 (1963).Google Scholar
  23. 23.
    Cipollini, R., A. Guarino, G. Perez: Radiolisi di miscele di metano e gas inerti ad alta conversione. Gazz. chim. ital. 95, 43 (1965).Google Scholar
  24. 24.
    Clay, P. G., G. R. A. Johnson, and J. M. Warman: y-ray induced oxidation of carbon monoxide: evidence for an ionic chain reaction. Discuss. Faraday Soc. 36, 46 (1963).CrossRefGoogle Scholar
  25. 25.
    Collins, C. B., W. B. Hurt, and W. W. Robertson: The molecular spectrum in a helium afterglow. M. R. C. McDowell, Ed., „Atomic Collision Processes“, S. 517, North Holland Publ. Comp., Amsterdam 1964.Google Scholar
  26. 26.
    Collinson, E., J. F. J. Todd, and F. Wilkinson: Electron multiplication in argon as a guide to mechanism in the radiation chemistry of n-butane. Discuss. Faraday Soc. 36, 83 (1963).CrossRefGoogle Scholar
  27. 27.
    Cooper, C. D., and M. Lichtenstein: Spectra of argon, oxygen, and nitrogen mixtures. Physic. Rev. 109, 2026 (1958).CrossRefGoogle Scholar
  28. 28.
    Dawson, P. H., and A. W. Tickner: Mass spectrometry of ions in glow discharges. VI. Ionization by metastable He atoms. J. chem. Physics (im Druck).Google Scholar
  29. 29.
    Dondes, S., P. Harteck, and H. Weyssenholl: The gamma radiolysis of carbon monoxide in the presence of rare gases. Z. Naturforsch. 19a, 13 (1964).Google Scholar
  30. 30.
    Dorfman, L. M., and A. C. Wahl: The radiation chemistry of acetylene. I. Rare gas sensitization. II. Wall effect in benzene formation. Radiat. Res. 10, 680 (1959).CrossRefGoogle Scholar
  31. 31.
    Evett, A. A.: Ground state of the helium-hydride ion. J. chem. Physics 24, 150 (1956).CrossRefGoogle Scholar
  32. 32.
    Field, F. H.: Benzene production in the radiation chemistry of acetylene. J. physic. Chem. 68, 1039 (1964).CrossRefGoogle Scholar
  33. 33.
    Field, F. H., H. N. Head, and J. L. Franklin: Reactions of gaseous ions. XI. Ionic reactions in krypton—methane and argon—methane mixtures. J. Amer. chem. Soc. 84, 1118 (1962).CrossRefGoogle Scholar
  34. 34.
    Field, F. H., and J. L. Franklin: Reactions of gaseous ions. X. Ionic reactions in xenon—methane mixtures. J. Amer. chem. Soc. 83, 4509 (1961).Google Scholar
  35. 35.
    Franklin, J. L., and F. H. Field: Reactions of gaseous ions. IX. Charge exchange reactions of rare gas ions with ethylene. J. Amer. chem. Soc. 83, 3555 (1961).CrossRefGoogle Scholar
  36. 36.
    Friedman, L., and T. F. Moran: Small-cross-section exothermic ion-molecule reactions. He+-H2, Ne+-H2. J. chem. Physics 42, 2624 (1965).CrossRefGoogle Scholar
  37. 37.
    Futrell, J. H., and L. W. Sieck: Rare gas sensitized radiolysis of acetylene. J. physic. Chem. 69, 892 (1965).CrossRefGoogle Scholar
  38. 38.
    Futrell, J. H., and T. O. Tiernan: Rare-gas sensitized radiolysis of propane. J. chem. Physics 37, 1694 (1962).CrossRefGoogle Scholar
  39. 39.
    Futrell, J. H., and T. O. Tiernan: Inhibition of the argon-sensitized radiolysis of propane by hydrogen. J. chem. Physics 38, 150 (1963).CrossRefGoogle Scholar
  40. 40.
    Giese, C. F., and W. B. Maier II: Ion-molecule reactions studied with mass analysis of primary ion beam. J. chem. Physics 35, 1913 (1961).CrossRefGoogle Scholar
  41. 41.
    Giese, C. F., and W. B. Maier: Dissociative ionization of CO by ion impact. J. chem. Physics 39, 197 (1963).CrossRefGoogle Scholar
  42. 42.
    Giese, C. F., and W. B. Maier: Energy dependence of cross sections for ion-molecule reactions. Transfer of hydrogen atoms and hydrogen ions. J. chem. Physics 39, 739 (1963).CrossRefGoogle Scholar
  43. 43.
    Gioumousis, G., and D. P. Stevenson: Reactions of gaseous molecule ions with gaseous molecules. V. Theory. J. them. Physics 29, 294 (1958).Google Scholar
  44. 44.
    Gorden, R., and P. Ausloos: Radiolysis of N15N140. J. Res. nat. Bur. Standards 69 A, 79 (1965).Google Scholar
  45. 45.
    Groth, W.: Photochemische Untersuchungen im extremen Ultraviolett. Z. Elektrochem. angew. physik. Chem. 42, 533 (1936).Google Scholar
  46. 46.
    Groth, W.: Photochemische Untersuchungen im Schumann-Ultraviolett Nr. 3. Z. physik. Chem. B 37, 307 (1937).Google Scholar
  47. 47.
    Groth, W.: Photochemische Untersuchungen im Schuman-Ultraviolett Nr. 9. Z. physik. Chem. N.F. 1, 300 (1954).CrossRefGoogle Scholar
  48. 48.
    Groth, W.: Photochemische Untersuchungen im Schumann-Ultraviolett. Z. Elektrochem., Ber. Bunsenges. physik. Chem. 58, 752 (1954).Google Scholar
  49. 49.
    Gustafsson, E., and E. Lindholm: Ionization and dissociation of H2, N2, and CO in charge exchange collisions with positive ions. Ark. Fysik 18, 219 (1960).Google Scholar
  50. 50.
    Gutbier, H.: Massenspektrometrische Untersuchungen der Reaktion X+ + H2 HX+ + H. Z. Naturforsch. 12a, 499 (1957).Google Scholar
  51. 51.
    Haeberli, W., P. Huber, E. Baldinger: Absolutwerte der Arbeit pro Ionenpaar von Po-a-Teilchen in den Gasen He, N2, A, 02, CO2. Helv. physica Acta 25, 467 (1952).Google Scholar
  52. 52.
    Haeberli, W., P. Huber, E. Baldinger: Arbeit pro Ionenpaar von Gasen und Gasmischungen für a-Teilchen. Helv. physica Acta 26, 145 (1953).Google Scholar
  53. 53.
    Harteck, P., F. Oppenheimer: Die Xenonlampe, eine Lichtquelle für äußerstes Ultraviolett. Z. physik. Chem. B 16, 77 (1932).Google Scholar
  54. 54.
    Hasted, J. B.: Physics of atomic collisions. Butterworths, London 1964.Google Scholar
  55. 55.
    Henglein, A., and G. A. Muccini: Mass spectrometric studies of ion-molecule reactions in mixtures of methane, methanol, water, argon and krypton with iodine: participation of excited ions and atoms and some radiation chemical considerations. Z. Naturforsch. 15a, 584 (1960).Google Scholar
  56. 56.
    Henglein, A., K. Lacmann, G. Jacobs: Zum Stoßmechanismus bimolekularer Reaktionen. Z. Elektrochem., Ber. Bunsenges. physik. Chem. 69, 279 (1965).Google Scholar
  57. 57.
    Herman, Z., and V. Cermak: Mass spectrometric investigation of the reactions of ions and excited neutral particles in mixtures containing mercury vapour. Collect. czechoslov. chem. Commun. 28, 799 (1963).Google Scholar
  58. 58.
    Herman, Z., and V. Cermak: Mass spectrometric investigation of reactions of eletronically excited neutral particles with alkali metal atoms. Nature [London] 199, 588 (1963).CrossRefGoogle Scholar
  59. 59.
    Herman, Z., and V. Cermak: The mass spectrometric detection of highly excited long-lived states of noble gas atoms. Collect. czechoslov. chem. Commun. 29, 953 (1964).Google Scholar
  60. 60.
    Herman, R.: Spectre d’emission de l’oxygène dans le xénon. C. R. hebd. Séances Acad. Sci. 222, 492 (1946).Google Scholar
  61. 61.
    Hertel, G. R., and W. S. Koski: Rare gas ion reactions with pentaborane9. J. Amer. chem. Soc. 87, 404 (1965).CrossRefGoogle Scholar
  62. 62.
    Hertzberg, M., D. Rapp, I. B. Ortenburger, and D. D. Briglia: Ion-neutral reactions in the helium-hydrogen system. J. chem. Physics 34, 343 (1961).CrossRefGoogle Scholar
  63. 63.
    Herzberg, G.: Spectra of diatomic molecules. Van Nostrand Comp., New York 1950.Google Scholar
  64. 64.
    Hoppe, Fortschr. d. chem. Forsch. Bd. 5, S. 213.Google Scholar
  65. 65.
    Hornbeck, J. A., and J. P. Molnar: Mass spectrometric studies of molecular ions in the noble gases. Physic. Rev. 84, 621 (1951).CrossRefGoogle Scholar
  66. 66.
    Hummel, R. W.: Production of high molecular weight products from the irradiation of methane with 4-MeV electrons. Nature [London] 192, 1178 (1961).CrossRefGoogle Scholar
  67. 67.
    Hummel, R. W.: Radiolysis of gaseous mixtures of methane with argon and xenon. Trans. Faraday Soc. (im Druck).Google Scholar
  68. 68.
    Hylleraas, E. A.: Über die Elektronenterme des Wasserstoffmoleküls. Z. Physik 71, 739 (1931).CrossRefGoogle Scholar
  69. 69.
    Hyman, H. H. (Editor): Noble-Gas Compounds. The University of Chicago Press, Chicago 1963.Google Scholar
  70. 70.
    Jesse, W. P., and R. L. Platzman: An isotope effect in the probability of ionizing a molecule by energy transfer from a metastable noble-gas atom. Nature [London] 195, 790 (1962).CrossRefGoogle Scholar
  71. 71.
    Jesse, W. P., and J. Sadauskis: Alpha-particle ionization in pure gases and the average energy to make an ion pair. Physic. Rev. 90, 1120 (1953).CrossRefGoogle Scholar
  72. 72.
    Jesse, W. P., and J. Sadauskis: Ionization by alpha particles in mixtures of gases. Physic. Rev. 100, 1755 (1955).CrossRefGoogle Scholar
  73. 73.
    Jesse, W. P., and J. Sadauskis: Absolute energy to produce an ion pair by beta particles from S35. Physic. Rev. 107, 766 (1957).CrossRefGoogle Scholar
  74. 74.
    Kaul, W., R. Fuchs: Massenspektrometrische Untersuchungen von Argon-Stickstoff-Gemischen und Stickstoff. Z. Naturforsch. 15a, 326 (1960).Google Scholar
  75. 75.
    Kaul, W., Lauterbach, R. Taubert: Die Auftrittspotentiale von HeH+, NeH+, ArH+, KrH+, KrD+ und H+. Z. Naturforsch. 16a, 624 (1961).Google Scholar
  76. 76.
    Kaul, W., R. Taubert: Sekundärreaktionen in Edelgas-Edelgas-und EdelgasStickstoff-Gemischen. Z. Naturforsch. 17a, 88 (1962).Google Scholar
  77. 77.
    Kebarle, P., and A. M. Hogg: Mass spectrometric study of ions at near atmospheric pressures. I. The ionic polymerization of ethylene. J. chem. Physics 42, 668 (1965).Google Scholar
  78. 78.
    Kenty, C., J. O. Aicher, E. B. Noel, A. Poritsky and V. Paolino: A new band system in the green excited in a mixture of xenon and oxygen and the energy of dissociation of CO. Physic. Rev. 69, 36 (1946).CrossRefGoogle Scholar
  79. 79.
    Kevan, L., and P. Hamlet: Radiolysis of hexafluoroethane. J. chem. Physics 42, 2255 (1965).CrossRefGoogle Scholar
  80. 80.
    Knewstubb, P. F., and A. W. Tickner: Mass spectrometry of ions in glow discharges. I. Apparatus and its application to the positive column in rare gases. J. chem. Physics 36, 674 (1962).Google Scholar
  81. 81.
    Knewstubb, P. F., and A. W. Tickner: Negative glow in rare gases. J. chem. Physics 36, 684 (1962).CrossRefGoogle Scholar
  82. 82.
    Koch, H.: Dissociation of methane molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of methane. Ark. Fysik 28, 529 (1965).Google Scholar
  83. 83.
    Koch, H.: Dissociation of ethane molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of ethane. Ark. Fysik 28, 559 (1965).Google Scholar
  84. 84.
    Koch, H., and L. Friedman: Hydrogen-helium ion-molecule reactions. J. chem. Physics 38, 1115 (1963).CrossRefGoogle Scholar
  85. 85.
    Koch, H., and E. Lindholm: Dissociation of ethanol molecule ions formed in charge exchange collisions with positive ions. Ark. Fysik 19, 123 (1961).Google Scholar
  86. 86.
    Kugler, E.: Über die Lumineszenz der Edelgasgemische Ar/Xe, Kr/Xe, Ar/Kr und der Gemische Xe/N2 und Kr/N2 bei Anregung mit schnellen Elektronen. Ann. Physik 7. Folge 14, 137 (1964).CrossRefGoogle Scholar
  87. 87.
    Lacmann, K., A. Henglein: Der Abstreifmechanismus der Reaktion bei Energien 20 eV. Z. Elektrochem., Ber. Bunsenges. physik. Chem. 69, 286 (1965).Google Scholar
  88. 88.
    Lampe, F. W.: The gaseous-ion sensitized formation of hydrogen atoms. J. Amer. chem. Soc. 82, 1551 (1960).CrossRefGoogle Scholar
  89. 89.
    Lampe, F. W., J. L. Franklin, and F. H. Field: Kinetics of the reactions of ions with molecules. In: G. Porter, Ed., Progr. in Reaction Kinetics, Vol. 1, 67, Pergamon Press, Oxford 1961.Google Scholar
  90. 90.
    Lampe, F. W., E. R. Weiner, W. H. Johnston, and W. S. Koski: Hydrazine formation in the gas phase radiolysis of ammonia. Int. J. Appl. Radiation and Isotopes 14, 231 (1963).CrossRefGoogle Scholar
  91. 91.
    Lavrovskaya, G. K., M. I. Markin, and V. L. Tal’roze: Elementary charge exchange processes between slow ions and polyatomic molecules. Proc. 2nd All Union Conf. Rad. Chem., 1962, AEC-TR-6228, S. 46.Google Scholar
  92. 92.
    Lind, S. C., and D. C. Bardwell: The chemical action of gaseous ions produced by alpha particles. VIII. The catalytic influence of ions of inert gases. J. Amer. chem. Soc. 48, 1575 (1926).CrossRefGoogle Scholar
  93. 93.
    Lind, S. C., and D. C. Bardwell, and J. H. Perry: VII. Unsaturated carbon compounds. J. Amer. chem. Soc. 48, 1556 (1926).CrossRefGoogle Scholar
  94. 94.
    Lind, S. C., and M. Vanpee: The effect of xenon ions in chemical action by alpha particles. J. physic. Colloid Chem. 53, 898 (1949).CrossRefGoogle Scholar
  95. 95.
    Lind, S. C.: Radiation chemistry of gases. Reinhold Publ. Comp., New York 1961.Google Scholar
  96. 96.
    Lindholm, E.: Ionization and fragmentation of CO by bombardement with atomic ions. Dissociation energy of CO. Heat of sublimation of carbon. Ark. Fysik 8, 433 (1954).Google Scholar
  97. 97.
    Lindholm, E.: lonisierung und Zerfall von Molekülen durch Stöße mit Atomionen. Z. Naturforsch. 9a, 535 (1954).Google Scholar
  98. 98.
    Lindholm, E., I. Szabo, and P. Wilmenius: Dissociation of acetylene molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of acetylene. Ark. Fysik 25, 417 (1963).Google Scholar
  99. 99.
    Lindholm, E., and P. Wilmenius: Ion-molecule reactions in the radiolysis of methanol. Ark. Kemi 20, 255 (1963).Google Scholar
  100. 100.
    Lovelock, J. E.: Measurement of low vapour concentrations by collision with excited rare gas atoms. Nature [London] 181, 1460 (1958).CrossRefGoogle Scholar
  101. 101.
    MacKenzie, D. R., and R. H. Wiswall: The synthesis of xenon compounds in ionizing radiation. In H. H. Hyman, Ed., Noble-Gas Compounds, S. 81, The University of Chicago Press, Chicago 1963.Google Scholar
  102. 102.
    Maier, W. B.: Dissociative ionization of N2 and N20 by rare gas ion impact. J. chem. Physics 41, 2174 (1964).CrossRefGoogle Scholar
  103. 103.
    Maier, W. B.: Dissociative ionization of molecules by rare-gas ion impact. J. chem. Physics 42, 1790 (1965).CrossRefGoogle Scholar
  104. 104.
    Mains, G. J., H. Niki, and M. H. J. Wijnen: The formation of benzene in the radiolysis of acetylene. J. physic. Chem. 67, 11 (1963).CrossRefGoogle Scholar
  105. 105.
    Maschke, A., and F. W. Lampe: The xenon-radiosensitized deuterium’ methane exchange. Recombination rate constant for deuterium atoms and methyl radicals. J. Amer. chem. Soc. 86, 569 (1964).CrossRefGoogle Scholar
  106. 106.
    Maurin, J.: Etude de la radiolyse du méthane en phase gazeuse. J. Chim. physique 59, 15 (1962).Google Scholar
  107. 107.
    McNesby, J. R., and H. Okabe: Vacuum ultraviolet photochemistry. Adv. in Photochem. Vol. 3, 157 (1964), Interscience Publ., New York.Google Scholar
  108. 108.
    Meisels, G. G., W. H. Hamill, and R. R. Williams: Ion-molecule reactions in radiation chemistry. J. chem. Physics 25, 790 (1956).CrossRefGoogle Scholar
  109. 109.
    Meisels, G. G., W. H. Hamill, and R. R. Williams: The radiation chemistry of methane. J. physic Chem. 61, 1456 (1957).CrossRefGoogle Scholar
  110. 110.
    Melton, C. E.: Charge transfer reactions producing intrinsic chemical change: methyl, methylene, and hydrogen radicals produced from argon and methane reactions. J. chem. Physics 33, 647 (1960).CrossRefGoogle Scholar
  111. 111.
    Melton, C. E., G. S. Hurst, and T. E. Bortner: Ionization produced by 5-MeV alpha particles in argon mixtures. Physic. Rev. 96, 643 (1954).CrossRefGoogle Scholar
  112. 112.
    Melton, C. E., P. S. Rudolph: Mass spectrum of acetylene produced by 5.1-MeV alpha particles. J. chem. Physics 30, 847 (1959).CrossRefGoogle Scholar
  113. 113.
    Melton, C. E., P. S. Rudolph: Transient species in the radiolytic polymerization of cyanogen. J. chem. Physics 33, 1594 (1960).CrossRefGoogle Scholar
  114. 114.
    Miller, W. F.: Mean energy per ion pair for electrons in helium. Bull. Amer physic. Soc. 1, 202 (1956).Google Scholar
  115. 115.
    Moe, H. J., T. E. Bonner, and G. S. Hurst: Ionization of acetylene mixtures and other mixtures by Pu231 a-particles. J. physic. Chem. 61, 422 (1957).CrossRefGoogle Scholar
  116. 116.
    Mund, W., C. Velghe, C. Devos et M. Vanpee: Expériences complémentaires sur la polymérisation radiochimique de l’acétylène. Bull. Soc. chim. Belgique 48, 269 (1939).Google Scholar
  117. 117.
    Munson, M. S. B., F. H. Field, and J. L. Franklin: High pressure mass spectrometric study of reactions of rare gases with N2 and CO. J. chem. Physics 37, 1790 (1962).CrossRefGoogle Scholar
  118. 118.
    Muschlitz, E. E., and M. J. Weiss: Inelastic collisions of metastable atoms in gases. Dissociative ionization. In M. R. C. McDowell, Ed., „Atomic Collision Processes“, S. 1073, North-Holland Publ. Comp., Amsterdam 1964.Google Scholar
  119. 119.
    Okabe, H.: Intense resonance line sources for photochemical work in the vacuum ultraviolet region. J. opt. Soc. America 54, 478 (1964).CrossRefGoogle Scholar
  120. 120.
    Ortenburger, I. B., M. Hertzberg, and R. A. Ogg: Secondary reactions in a gas discharge. J. chem. Physics 33, 579 (1960).CrossRefGoogle Scholar
  121. 121.
    Pahl, M., U. Weimer: Zur Massenspektrometrie an Glimmentladungen. Z. Naturforsch. 13a, 745 (1958).Google Scholar
  122. 122.
    Pahl, M., U. Weimer: Neuere Ergebnisse über Sekundärprozesse langsamer Ionen in Gasen. Ergebn. exakt. Naturwiss. 34, 182 (1962).Google Scholar
  123. 123.
    Pahl, M., U. Weimer: Massenspektrometrische Untersuchungen an der positiven Säule in Ar, Ar—He-und Ar—HZ Gemischen. Z. Naturforsch. 18a, 1276 (1963).Google Scholar
  124. 124.
    Pahl, M., U. Weimer, U. Weimer: Ionenbildung in Edelgasentladungen mit H2 Zusatz. Proc. IV. Int. Conf. Ionization Phenomena in Gases, II A, S. 293, Uppsala 1959, North-Holland Publ. Comp., Amsterdam.Google Scholar
  125. 125.
    Palmer, R. C., D. C. Bardwell, and M. D. Peterson: Acceleration of X-ray energized chemical reactions of organic gases by energy transfer from noble gases. J. chem. Physics 28, 167 (1958).CrossRefGoogle Scholar
  126. 126.
    Patel, C. K. N.: Collision processes leading to optical masers in gases. In M. R. C. McDowell, Ed., „Atomic Collision Processes“, S. 1009, North-Holland Publ. Comp., Amsterdam 1964.Google Scholar
  127. 127.
    Penning, F. M.: Ober Ionisation durch metastabile Atome. Naturwissenschaften 15, 818 (1927).CrossRefGoogle Scholar
  128. 128.
    Pettersson, E.: Dissociation of n-propanol molecule ions formed in charge exchange collisions with positive ions. Ark. Fysik 25, 181 (1963).Google Scholar
  129. 129.
    Pettersson, E., and E. Lindholm: Dissociation of propane molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of propane. Ark. Fysik 24, 49 (1963).Google Scholar
  130. 130.
    Platzman, R. L.: Probabilité d’ionisation par transfert d’énergie d’atomes excités a des molécules. J. Physique Radium 21, 853 (1960).CrossRefGoogle Scholar
  131. 131.
    Platzman, R. L.: Total ionization in gases by high-energy particles: an appraisal of our understanding. Intern. J. Appl. Radiation and Isotopes 10, 116 (1961).CrossRefGoogle Scholar
  132. 132.
    Pratt, T. H., and R. Wolfgang: The self-induced exchange of tritium gas with methane. J. Amer. chem. Soc. 83, 10 (1961).CrossRefGoogle Scholar
  133. 133.
    Rosenblum, C.: The efficiency of argon as a radiochemical catalyst. J. physic. Chem. 38, 683 (1934).CrossRefGoogle Scholar
  134. 134.
    Rosenblum, C.: Benzene formation in the radiochemical polymerization of acetylene. J. physic. Chem. 52, 474 (1948).CrossRefGoogle Scholar
  135. 135.
    Rudolph, P. S., and S. C. Lind: Alpha radiolysis of CO with and without Xe. J. chem. Physics 32, 1572 (1960).CrossRefGoogle Scholar
  136. 136.
    Rudolph, P. S., and S. C. Lin, and C. E. Melton: Ionic complexes of Xe and CZH2 produced by these radiolysis of the gases. J. chem. Physics 36, 1031 (1962).CrossRefGoogle Scholar
  137. 137.
    Schaeffer, O. A., and S. O. Thompson: The exchange of hydrogen and deuterium in the presence of electrons and ultraviolet radiation. Radiat. Res. 10, 671 (1959).CrossRefGoogle Scholar
  138. 138.
    Schissler, D. O., and D. P. Stevenson: Reactions of gaseous molecule ions with gaseous molecules. II. J. chem. Physics 24, 926 (1956).CrossRefGoogle Scholar
  139. 139.
    Sharpe, J.: Energy per ion pair for argon with small admixture of other gases. Proc. physic. Soc. [London] A 65, 859 (1952).Google Scholar
  140. 140.
    Sholette, W. P., and E. E. Muschlit.: Ionizing collisions of metastable helium atoms in gases. J. chem. Physics 36, 3368 (1962).CrossRefGoogle Scholar
  141. 141.
    Sjögren, H.: Dissociation of methylamine molecule ions formed in charge exchange collisions with positive ions. Ark. Fysik (im Druck).Google Scholar
  142. 142.
    Smith, C. F., B. G. Gorman, and F. W. Lampe: Hydrogen inhibition of the rare gas sensitized radiolysis of cyclopropan. J. Amer. chem. Soc. 83, 3559 (1961).CrossRefGoogle Scholar
  143. 143.
    Stevenson, D. P., and D. O. Schissler: Rate of the gaseous reactions, J. chem. Physics 23, 1353 (1955).CrossRefGoogle Scholar
  144. 144.
    Stevenson, D. P., and D. O. Schissler: Reactions of gaseous molecule ions with gaseous molecules. IV. Experimental method and results. J. chem. Physics 29, 282 (1958).CrossRefGoogle Scholar
  145. 145.
    Stevenson, D. P., and D. O. Schissler: Mass spectrometry and radiation chemistry. In M. Haissinsky, Ed., „Actions Chimiques et Biologiques des Radiations“, 5. Serie, S. 167, Masson et Cie., Paris 1961.Google Scholar
  146. 146.
    Stewart, A. C., and H. J. Bowlden: ce-particle radiolysis of carbon monoxide. J. physic. Chem. 64, 212 (1960).CrossRefGoogle Scholar
  147. 147.
    Stiel, L. J., and P. Ausloos: Radiolysis of ethane-1,1,1-d3. J. chem. Physics 36, 2904 (1962).CrossRefGoogle Scholar
  148. 148.
    Streng, A.G., A. D. Kirshenbaum, L. V. Streng, and A. V. Grosse: Preparation of rare-gas fluorides and oxyfluorides by the electric-discharge method and their properties. In: H. H. Hyman, Ed., „Noble-Gas Compounds“, S. 73, University of Chicago Press, Chicago 1963.Google Scholar
  149. 149.
    Subbanna, V. V., L. H. Hall, and W. S. Koski: Gas phase radiolysis of pentaborane-9. J. Amer. chem. Soc. 86, 1304 (1964).CrossRefGoogle Scholar
  150. 150.
    Tanaka, I., and E. W. R. Steacie: Sensitized photoionization in far ultraviolet. J. chem. Physics 26, 715 (1957).CrossRefGoogle Scholar
  151. 151.
    Tanaka, I., and E. W. R. Steacie: Sensitized photoionization. Canad. J. Chem. 35, 821 (1957).CrossRefGoogle Scholar
  152. 152.
    Thompson, S. O., and O. A. Schaeffer: The role of ions in the radiation induced exchange of hydrogen and deuterium. J. Amer. chem. Soc. 80, 553 (1958).CrossRefGoogle Scholar
  153. 153.
    Walker, D. C., and R. A. Back: Photochemistry in the photo-ionization region. II. Photochemistry of methane, ethane, and ethylene at wavelengths below 900 A. J. chem. Physics 38, 1526 (1963).CrossRefGoogle Scholar
  154. 154.
    Weeks, J. L., and M. S. Matheson: Photochemistry of the formation of xenon difluoride. In: H.H. Hyman, Ed., „Noble-Gas Compounds“, S. 89, The University of Chicago Press, Chicago 1963.Google Scholar
  155. 155.
    Weiner, E. R., G. R. Hertel, and W. S. Koski: Gas phase reactions between carbon tetrachloride and mass analyzed ions of nitrogen between 3 and 200 E.v. J. Amer. chem. Soc. 86, 788 (1964).CrossRefGoogle Scholar
  156. 156.
    Weiss, J., and W. Bernstein: Energy required to produce one ion pair in several noble gases. Physic. Rev. 103, 1253 (1956).CrossRefGoogle Scholar
  157. 157.
    Weiss, J., and W. Bernstein: The current status of W, the energy to produce one ion pair in a gas. Radiat. Res. 6, 603 (1957).CrossRefGoogle Scholar
  158. 158.
    Wilmenius, P., and E. Lindholm: Dissociation of methanol molecule ions formed in charge exchange collisions with positive ions. Ion-molecule reactions of methanol with very slow positive ions. Ark. Fysik 21, 97 (1962).Google Scholar
  159. 159.
    Zubler, E. G., W. H. Hamill, and R. R. Williams, Jr.: Ion pair yields in the X-ray decomposition of hydrogen bromide in rare gas atmospheres. J. chem. Physics 23, 1263 (1955).CrossRefGoogle Scholar
  160. 160.
    Davis, D. R., W. F. Libby, and L. Kevan: Electron and energy transfer in irradiated xenon-hexane liquid solutions. J. Amer. chem. Soc. 87, 2766 (1965).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1965

Authors and Affiliations

  • Günther v. Bünau
    • 1
  1. 1.Max-Planck-Institut für Kohlenforschung, Abteilung StrahlenchemieMülheim/RuhrDeutschland

Personalised recommendations