Advertisement

Neutron Attenuation

  • W. Selph
  • P. Lafore
  • D. K. Trubey
  • J. Butler
  • A. F. Avery
  • S. G. Tsypin
  • V. I. Kukhtevich
  • H. Gronroos
  • D. L. Broder
  • M. Leimdörfer
  • R. L. French
  • M. B. Wells

Abstract

The neutron is one of the basic nuclear building blocks (or nucleons). Except for the absence of electrical charge, it resembles the other type of nucleon, the proton. The absence of charge is, however, a very important characteristic to the behavior of neutrons in motion external to the nucleus. Since they do not interact with electric fields neutrons are free to travel through matter until a nucleus is encountered. The radius of the nuclear force, typically 10−12 cm compared with interatomic spacing, typically 10−8 cm, would indicate a mean free path on the order of several cm between nuclear encounters.

Keywords

Fast Neutron Boron Carbide Energy Group Relaxation Length Buildup Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1](a)
    D. J. Hughes and R. B. Schwartz: Neutron Cross Sections, Bnl 325 (July 1, 1958 ).Google Scholar
  2. (b).
    D. J. Hughes, B. A. Magurno, and M. K. Brussel: Neutron Cross Sections, Bnl 325, Supplement 1 (1960).Google Scholar
  3. (c).
    J. R. Stehn, M. D. Goldberg et al.: Neutron Cross Sections, Bnl 325 (February 1965).Google Scholar
  4. [2]
    M. D. Goldberg, V. M. May, and J. R. Stern: Angular Distribution in Neutron Induced Reactions, Bnl 400,2nd Ed. (1962).Google Scholar
  5. [3]
    E. P. Blizard and L. S. Abbott (Eds.): Reactor Handbook, 2nd Ed., Vol. Iii, Part B “Shielding”, New York: Interscience Publishers 1962.Google Scholar
  6. [4]
    M. C. Bertin, J. Celnik, H. Flesher, G. Grocliowski, M. H. Kalos, J. H. Ray, and E. S. Troubetzkoy: Neutron Cross Sections of 238U 235UGoogle Scholar
  7. [1]
    H. Goldstein: Fundamental Aspects of Reactor Shielding (in Russian translation), Moscow: Gosatomizdat 1961.Google Scholar
  8. [2]
    G. I. Marchuk: Numerical Methods of Nuclear Reactor Calculation (in Russian), Moscow: Atomizdat 1958.Google Scholar
  9. [3]
    D. L. Broder, A. P. Kondrashov, A. A. Kutuzov, V. A. Naumov, Y. A. Sergeev, and A. V. Tuxusova: Atomnaja Energija 12, 129 (1962).Google Scholar
  10. [4]
    B. T. Price, C. C. Horton, and K. T. Spinney: Radiation Shielding (in Russian translation), Moscow: Foreign Literature Publishing House 1959.Google Scholar
  11. [5]
    Broder, A., P. Kondrashov, and A. A. Kuzuzov in: Neutron Physics (in Russian), Moscow: Gosatomizdat 1961.Google Scholar
  12. [6]
    D. L. Broder, K. P. Popxov, and S. M. Rubanov: Biological Shielding of Ships’ Reactors (in Russian), Leningrad: Sudostroenie 1964.Google Scholar
  13. [7]
    A. P. Veselkin, M. E. Netecha, and O. YA. Shakh in: Problems of Dosimetry and Radiation Shielding (in Russian), Moscow: Atomizdat 1966.Google Scholar
  14. [8]
    V. N. Avaev, G. A. Vasiliev, A. P. Veselkin, Yu. A. Egorov, Yu. V. Orlov, and Yu. V. Pankratiev: Atomnaja Energija 15, 20 (1963).Google Scholar
  15. [9]
    A. P. Veselkin, Yu. A. Egorov, Yu. V. Orlov, and Yu. V. Pankratiev: Atomnaja Energija 16, 32 (1964).Google Scholar
  16. [10]
    G. A. Vasiliev, A. P. Veselkin, Yu. A. Egorov, V. A. Kucheryaev, and Yu. V. Pankratiev: Atomnaja Energija 18, 121 (1965).Google Scholar
  17. [11]
    Yu. A. Egorov in: Reactor Shielding, Iaea, Vienna, 1964.Google Scholar
  18. [12]
    V. N. Avaev and Yu. A. Egorov in: Problems of Dosimetry and Radiation Shielding (in Russian), Moscow: Atomizdat 1965.Google Scholar
  19. [13]
    D. L. Broder, L. N. Zaytsev, B. S. Sychev, and A. M. Tugohikov: Atomnaja Energija 16, 26 (1964).Google Scholar
  20. [1]
    A. M. Weinberg and E. P. Wigner: The Physical Theory of Neutron Chain Reactors, Chicago Ill.: The University of Chicago Press 1958.Google Scholar
  21. [2]
    R. D. Albert and T. A. Welton: A Simplified Theory of Neutron Attenuation and Its Application to Reactor Shield Design, Usaec Report Wapd-15 (Del.), Westinghouse Electric Corp., Atomic Power Division (1950).Google Scholar
  22. [3]
    G. T. Chapman and C. L. Storrs: Effective Neutron Removal Cross Sections for Shielding, Usaec Report Aecd-3978 (1955).Google Scholar
  23. [4]
    A. W. Casper: Modified Fast Neutron Attenuation Functions, Usaec Report Xdc 60–2–76, General Electric Co., Aircraft Nuclear Propulsion Department, Feb. 3, 1960.Google Scholar
  24. [5]
    J. T. Martin, J. P. Yalch, and W. E. Edwards: Shielding Computer Programs 14–0 and 14–1, Reactor Shield Analysis, GE–Annpd Xdc 59–2–16 (1959).Google Scholar
  25. [6]
    E. P. Blizard in H. Etherington (Ed.): Nuclear Engineering Handbook, New York: McGraw-Hill 1958, p. 7–89.Google Scholar
  26. [7]
    S. Glasstone and M. C. Edlund: The Elements of Nuclear Reactor Theory, New York: D. Van Nostrand 1952.Google Scholar
  27. [8]
  28. [9]
    J. W. Haffner: Personal communication (1959).Google Scholar
  29. [10]
    D. C. Anderson and K. Shure: Nucl. Sci. Eng. 8, 260–269 (1960).Google Scholar
  30. [11]
    P. W. Schreiber and F. D. Kodras: Measured and Calculated Radiation Levels Within and Behind Beryllium Oxide, Usaec Report Xdc 61–1–149 (1961).Google Scholar
  31. [12]
    K. T. Spinney: Neutron Attenuation in Concrete, Aere T/R 2507 (1957).Google Scholar
  32. [13]
    A. F. Avery, D. E. Bendall, J. Butler, and K. T. Spinney: Methods of Calculations for Use in the Design of Shields for Power Reactors, Aere-R 3216 (1960).Google Scholar
  33. [14]
    D. K. Trubey: Calculation of Fission-Source Thermal-Neutron Distribution in Water by the Transfusion Method, Usaec Report Ornl-3487 (1964).Google Scholar
  34. [15]
    H. A. Steinberg and R. Aronson: Fantasia II and Triprod II — Shielding Codes for the Ibm 7090, ML-Tdr-64–52 (1964).Google Scholar
  35. [1]
    A. F. Avery, D. E. Bendall, J. Butler, and K. T. Spinney: Methods of Calculation for Use in the Design of Shields for Power Reactors, Aere-R 3216 (1960).Google Scholar
  36. [2]
    H. Gronroos: Energy Dependent Removal Cross-Sections in Fast-Neutron Shielding Theory, AE-184 (1965). See also Sec. 5.2. 3. 2.Google Scholar
  37. [3]
    A. Bardett: Radiation Measurements through the Biological Shield of a Calder Hall Reactor, Aeewr 75 (1961).Google Scholar
  38. [4]
    A. F. Avery: A Multigroup Method for Calculating Neutron Attenuation in Water, Aeew-R 125 (1962).Google Scholar
  39. [5]
    D. E. Bendall: Rash D — A Mercury Programme for Neutron Shielding Calculations, Aeew-M 261 (1962).Google Scholar
  40. [6]
    J. Butler: The Status of Theoretical Methods for Reactor Shield Design, Aeew-R 361 (1964).Google Scholar
  41. [7]
    E. G. Peterson: Mac — A Bulk Shielding Code, HW-73381 (1962).Google Scholar
  42. [8]
    L. Hjärne: A User’s Manual for the N.R.N. Shield Design Method, AE-145 (1964).Google Scholar
  43. [9]
    A. M. Weinberg and E. P. Wigner: The Physical Theory of Neutron Chain Reactors, Chicago/Ill.: The University of Chicago Press 1958.Google Scholar
  44. [10]
    U. Canali, H., Ilsemann, C. Ponti, and H. Preusch: Mac-Rad — A Reactor Shielding Code, Eur 2152 e (1964).Google Scholar
  45. [11]
    L. Hjärne and M. Leimdörfer: A New Method for Predicting the Penetration and Slowing-Down of Neutrons in Reactor Shields, AE-185, AB Atomenergi (1965).Google Scholar
  46. [12]
    E. Aalto, R. FRÄKI, and K. Malen: The Fine Adjustment of the Neutron Penetration in the N.R. N. Method. N.cl. Sci. Eng. 22, No. 4, 443 (1965).Google Scholar
  47. [13]
    V. P. Duggal and S. M. Puri: Fast Neutron Attenuation in Graphite. J. Appl. Phys. 29, No. 4 (1958).Google Scholar
  48. [14]
    A. K. Mccracken et al.: Neutron Penetration in Bulk Media. A.N.S. Transactions 5, No. 2, 400 (November 1962).Google Scholar
  49. [15]
    J. P. Millot: A Study of Fast Neutron Scattering Displacement Cross-Sections, Cea-2142 (1962).Google Scholar
  50. [16]
    G. Holte: Arkiv för Fysik, Band 8, No. 15 (1953).Google Scholar
  51. [17]
    H. R. Mck. Hyder, C. J. Kenward, A. Green, and E. D. Jones: Flux Measurements in a Dummy In-Pile Irradiation Facility in Lido, Aere-M 845 (1961).Google Scholar
  52. [18]
    E. Aalto and R. Nilsson: Measurements of Neutron and Gamma Attenuation in Massive Laminated Shields of Concrete and a Study of the Accuracy of Some Methods of Calculation, AE-157, AB Atomenergi (1964).Google Scholar
  53. [19]
    F. P. Youell, A. K. Mccracken, and P. Oliver: Bradwell Nuclear Power Station — Comparison of Shielding Performance with Design Calculations, Proc. 3rd Int. Conf. Peacef. Uses At. En. 4, 339 (1965).Google Scholar
  54. [20]
    T. V. Blosser, R. C. Reid, and G. W. Bond: A Study of the Nuclear and Physical Properties of the O.R.N.L. Graphite Reactor Shield, Ornl-2195 (1958).Google Scholar
  55. [21]
    J. M. Robson: The Attenuation of Neutrons by the Side Shield of the N.R.U. Reactor, Crp-860 (1959).Google Scholar
  56. [22]
    A. C. Whittier and J. W. Hilborn: N.P.D. Bulk Shield, R 64 Cap 15 (1964).Google Scholar
  57. [23]
    V. V. Verbinski et al.: Measurements and Calculations of the Spectral and Spatial Details of the Fast-Neutron Flux in Water Shields. Nucl. Sci. Eng. 27, 2, 283 (1967).Google Scholar
  58. [24]
    V. V. Verbinski et al.: A Fast-Neutron Spectrometer for Reactor Environments. Nucl. Inst. Methods 46, No. 2, 309 (1967).ADSGoogle Scholar
  59. [25]
    V. N. Avaev et al.: Sov. At. En. 15, 675 (1964).Google Scholar
  60. [26]
    D. Yetman, B. Eiseman, and G. Rabinowitz: Description of the Input Preparation and Operating Procedures for 9-Niobe, an Ibm-7090 Code, Nda-2143–18 (1961).Google Scholar
  61. [27]
    J. Certaine, E. Dedufour, and G. Rabinowitz: Renupak — An Ibm-704 Programme for Neu- tron Moment Calculations, Nda-2120–3 (1959).Google Scholar
  62. [28]
    A. K. Mccracken: Private communication.Google Scholar
  63. [29]
    E. Aalto, R. FRÄKI, and R. Sandlin: Measured and Predicted Variations in Fast Neutron Spectrum in Massive Shields of Water and Concrete. Nucl. Str. Eng. 2, No. 2, 233 (1965).Google Scholar
  64. [30]
    B. Chinaglia, C. Fedrighini, A. M. Moncassoli, and C. Ponti: Neutron Attenuation Experiments in Iron Water Configurations. Nucl. Sci. Eng. 27, 2, 308 (1961).Google Scholar
  65. [31]
    A. D. Krumbein: Summary of Nda Unclassified Results of Moments Calculations for the Penetration of Neutrons through Various Materials, Nda92–2 (Rev.) 1957.Google Scholar
  66. [32]
    D. L. Broder et al.: The Passage of Fast Neutrons through Lead and Iron. Sov. J. At. En. 7, 797 (1959).Google Scholar
  67. [33]
    J. R. Moon: Private communication.Google Scholar
  68. [34]
    V. I. Kukhtevich and B. I. Sinitsyn: Passage of Neutrons with Energies of 0.5 and 1.0 MeV through Water and Mixtures of Water with Heavy Components. Sov. J. At. En. 10, 5, 501 (1962).Google Scholar
  69. [35]
    K. Shure: P-3 Multigroup Calculations of Neutron Attenuation. Nucl. Sci. Eng. 19, 3, 310–320 (1964).Google Scholar
  70. [36]
    G. Chinaglia and A. M. MoNCassoLI: Neutron Attenuation Experiments in Slab Type Iron-Water Shieldings. Iaea Tech. Report Series 34, p. 3 (1963).Google Scholar
  71. [37]
    C. Ponti: Private communication.Google Scholar
  72. [38]
    A. F. Avery and J. Butler: The Calculation of Fast-Neutron Spectra for Pressure Vessel Damage Studies, Aeew-R 377 (1964). (Also NP-14383.)Google Scholar
  73. [39]
    E. Aalto, R. Sandlin, and R. Fraki: Measured and Predicted Variations in Fast Neutron Spectrum When Penetrating Laminated Fe-D2O, AE-196 (1965).Google Scholar
  74. [40]
    R. L. Ashley and W. E. Kreger (Eds.): Neutron Attenuation in Optically Thick Shields. Report of the Special Panel Discussion Sponsored by the Shielding Division of the American Nuclear Society at the 1963 Winter Meeting in New York City, N. Y., 20th November, 1963. Ans-SD-1 (1964).Google Scholar
  75. [41]
    C. Ponti: Private communication.Google Scholar
  76. [42]
    M. LeimdÖRfer: Private communication.Google Scholar
  77. [1]
    R. Aronson: Neutron Penetration in Hydrogen, Nda 15c-39 (June 2, 1954 ).Google Scholar
  78. [2]
    SH. S. NikolaisxvIli in: Physics of Reactor Shielding (in Russian), (D. L. Broder et al., Eds.), Moscow: Gosatomizdat 1963, p. 24.Google Scholar
  79. [3]
    G. T. Chapman and C. L. Storrs: Effective Neutron Removal Cross Sections for Shielding, Aecd3978 (September 19, 1955 ).Google Scholar
  80. [4]
    C. R. Tipton (Ed.): Reactor Handbook, 2nd Ed., Vol. I, Chapter 6, New York: Interscience Publishers 1960.Google Scholar
  81. [5]
    E. P. Blizard and L. S. Abbott (Eds.): Reactor Handbook, 2nd Ed., Vol. Iii, Part B, Chapter 8, New York: Interscience Publishers 1962.Google Scholar
  82. [6]
    H. Goldstein: Fundamental Aspects of Reactor Shielding, Reading, Mass.: Addison-Wesley 1959.Google Scholar
  83. [7]
    B. I. Sinitsyn and S. G. Tsypin: Atomnaja Energija 12, 306 (1962).Google Scholar
  84. [8]
    V. P. Mashxovlch, A. N. Nikolaev et al.: Atom-naja Energija 17, 65 (1964).Google Scholar
  85. [9]
    R. Beauge, J. P. Millot, and J. Rastoin: Experiments on Neutron Attenuation by Ordinary Concrets, Cea-1186 (April 19, 1959 )Google Scholar
  86. R. Beauge, J. P. Millot, and J. Rastoin: Experiments by Neutrons Attenuation by Water-Lead Mixtures, Cea-1187 (May 1959).Google Scholar
  87. [10]
    V. I. Kukhtevich and B. I. Sinitsyn: Atomnaja Energija 10, 511 (1961).Google Scholar
  88. [11]
    V. I. Kukhtevich, B. I. Sinitsyn, and S. G. Tsypin: Atomnaja Energija 5, 565 (1958).Google Scholar
  89. [12]
    V. I. Kukhtevich, B. I. Sinitsyn, and S. F. Degtyaryov in: Neutron Physics (in Russian), (P. A. Krupchitsky, Ed.), Moscow: Gosatomizdat 1961, p. 278.Google Scholar
  90. [13]
    A. Avery, J. Butler et al.: Trans. Am. Nucl. Soc. 5, 2, 400 (1962).Google Scholar
  91. [14]
    D. L. Broder, A. P. Kondrashov et al. in: Neutron Physics (in Russian), ( P. A. Krupchitsky, Ed.), Moscow: Gosatomizdat 1961, p. 263.Google Scholar
  92. [15]
    D. Hughes and R. Schwartz: Neutron Cross Sections, Bnl-325 (1958).Google Scholar
  93. [16]
    R. Aronson, J. Certaine, and H. Goldstein: Penetration of Neutrons from Point Isotropic Monoenergetic Sources in Water, Usa EC Rept., Nyo-6269 (December 15, 1954 ).Google Scholar
  94. [17]
    R. Macdonald and H. Baucom: Nucleonics 20, 158 (1962).Google Scholar
  95. [18]
    J. Bourgeais, P. Kafare et al.: Report 15/P/ 1190, The Second International Conference on Peaceful Uses of Atomic Energy, Geneva (1958).Google Scholar
  96. [19]
    I. V. Gordeev, D. A. Kardash, and A. V. Malyshev: Nuclear Physics Constants (in Russian), Moscow: Gosatomizdat 1963.Google Scholar
  97. [20]
    L. G. Abagyan, N. O. Bazazyants, I. I. Bondarenko, and M. N. Nikolaev: Group Constants for Reactor Calculations (in Russian), Moscow: Gosatomizdat 1964.Google Scholar
  98. [21]
    O. I. Leipunsky, S. G. Tsypin et al.: New Results of Shielding Research, Papier P/377, presented at the Third International Conference on Peaceful Uses of Atomic Energy, Geneva (1964).Google Scholar
  99. [22]
    B. I. Sinitsyn and S. G. Tsypin: Jadernit Energie 67, 5, 169 (1967).Google Scholar
  100. [1]
    H. Goldstein: Fundamental Aspects of Reactor Shielding, New York: Pergamon 1959.Google Scholar
  101. [2]
    E. P. Blizard and L. S. Abbott (Eds.): Reactor Handbook, 2nd Ed., Vol. 3, Part B “Shielding”, New York: Interscience Publishers 1962.Google Scholar
  102. [3]
    B. T. Price, C. C. Horton, and K. T. Spinney: Radiation Shielding, New York: Pergamon 1957.Google Scholar
  103. [4]
    Tx. Rockwell Iii (Ed.): Reactor Shielding Design Manual, Princeton, N. J.: D. Van Nostrand 1965.Google Scholar
  104. [5]
    Neutron Attenuation in Optically Thick Shields, Ans-SD-1 (1964), Shielding Division, American Nuclear Society.Google Scholar
  105. [6]
    A. F. Avery, D. E. Bendall, J. Butler, and K. T. Spinney: Methods of Calculation for Use in the Design of Shields for Power Reactors, Aere-R-3216 (1960).Google Scholar
  106. [7]
    G. M. Wing: An Introduction to Transport Theory, New York: Wiley 1962.Google Scholar
  107. [8]
    R. E. Beissner: The Application of Invariant Imbedding to Shielding Problems, General Dynamics Report Narf-61–41T, Forth Worth, Texas, March 9, 1962.Google Scholar
  108. [9]
    D. R. Mathews: Calculation of the Deep Penetration of Radiation by the Method of Invariant Imbedding, Ph. D. Thesis, Massachusetts Institute of Technology, Department of Nuclear Engineering, June, 1966.Google Scholar
  109. [10]
    K. F. Hansen: Techniques for Nuclear Shielding Calculations, Esd-Tdr-63–231 (1963).Google Scholar
  110. [11]
    J. P. Millot: Etude de la Diffusion des Neutron Rapides, Section Efficace de Deplacement, Theses, Cea-2142 (1962).Google Scholar
  111. [12]
    K. D. Lathrop: Anisotropic Scattering Approximations in the Boltzmann Transport Equation, LA-3051 (1964).Google Scholar
  112. [13]
    G. C. Pomraning: A New Method of Solution for Particle Transport Problems, General Atomic Report GA-6497 (July 29, 1965). See also Trans. Ans 8, No. 2, 488–489 (November 1965).MathSciNetGoogle Scholar
  113. [14]
    J. Agresta, M. Slater, and H. Soodak: Validity of Diffusion Theory for Shielding Analysis, Nda2130–2 (1959).Google Scholar
  114. [15]
    R. L. French: A Last-Collision Approach to Calculating the Angular Distribution of Fast Neutrons Penetrating a Shield. Trans. Am. Nucl. Soc. 7, 41 (1964).Google Scholar
  115. [16]
    R. D. Albert and T. A. Welton: A Simplified Theory of Neutron Attenuation and Its Application to Reactor Shield Design, Wapd-15 (1950).Google Scholar
  116. [17]
    C. Cooper, J. D. Jones, and C. C. Horton: Some Design Criteria for Hydrogen-Metal Reactor Shields. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva 2, 1958; 13 (1958) 21. (A/Conf./ 15/P/84).Google Scholar
  117. [18]
    R. W. Deutsch: Neutron Flux Distributions in Iron-Water Shields. Trans. Am. Nucl. Soc. 5, 217 (1962).Google Scholar
  118. [19]
    R. W. Deutsch: Method for Analysing Low-Enrichment, Light-Water Cores. Reactor Sci. and Tech. 14, 168 (1961).MathSciNetGoogle Scholar
  119. [20]
    R. W. Deutsch: Computing 3-Group Constants for Neutron Diffusion. Nucleonics 15, 1, 47 (1957).Google Scholar
  120. [21]
    J. W. Haffner: Neutron Energy Spectrum Calculations in Reactor Shields. Nucl. Eng. and Sci. Conf., Cleveland, 1959. Preprint V-84, Engineers Joint Council, 29 West 39th St., New York:Google Scholar
  121. [22]
    D. C. Anderson and K. Shure: Thermal Neutron Flux Distributions in Metal-Hydrogenous Shields. Nucl. Sci. Eng. 8, 260 (1960).Google Scholar
  122. [23]
    K. Shure: P-3 Multigroup Calculations of Neutron Attenuation. Nucl. Sci. Eng. 9, 310 (1964).Google Scholar
  123. [24]
    E. Gelbard, J. Davis, and J. Pearson: Iterative Solutions to the P1 and Double-P1 Equations. Nucl. Sci. Eng. 5, 36 (1959).Google Scholar
  124. [25]
    H. BoxL, Jr., E. M. Gelbard et al.: P3MG1 - A One - Dimensional Multigroup P-3 Program for the Philco-2000 Computer, Wapd-TM-272 (1963).Google Scholar
  125. [26]
    C. Carter and G. Rowlands: Some Topics in One-Velocity Neutron Transport Theory. Reactor Sci. and Tech. 15, 1 (1961).Google Scholar
  126. [27]
    R. A. Reiter and S. Weinstein: The Use of Diffusion Equations for P L and Double-PL Calculations, Kapl-M-Rar-1 (1963).Google Scholar
  127. [28]
    A. F. Avery: The Prediction of Neutron Attenuation in Iron-Water Shields, Aeew-R-125 (1962).Google Scholar
  128. [29]
    L. Hjärne and M. Leimdörfer: A Method for Predicting the Penetration and Slowing Down of Neutrons in Reactor Shields. Nucl. Sci. Eng. 24, 165 (1966).Google Scholar
  129. [30]
    E. Aalto, R. FRÄKI, and K. Malen: The Fine Adjustment of the Neutron Penetration in the Nrn Method. Nucl. Sci. Eng. 22, 443 (1965).Google Scholar
  130. [31]
    E. Aalto and R. Nilsson: Measurements of Neutron and Gamma Attenuation in Massive Laminated Shields of Concrete and a Study of the Accuracy of Some Methods of Calculation, Ab Atomenergi Report AE-157 (Sept. 1964).Google Scholar
  131. [32]
    E. J. Aalto: Comparison of Measured and Calculated Neutron Fluxes in Laminated Iron and Heavy Water. Nucl. Sci. Eng. 22, 33 (1965).Google Scholar
  132. [33]
    E. J. Aalto: A Comparison of Shielding Calculations with Absolute Measurements in Massive Shields. Nucl. Appl. 1, 359 (1965).Google Scholar
  133. [34]
    E. Aalto, R. Fräki, and R. Sandlin: Measured and Predicted Variations in Fast Neutron Spectrum in Massive Shields of Water and Concrete. Nucl. Structural Engineering 2, 233 (1965).Google Scholar
  134. [35]
    C. C. Grosjean: Multiple Isotropic Scattering in Convex Homogeneous Media Bounded by Vacuum. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva 2, 1958. Part I: 16, 413 (1958). (A/Conf./ P/1961); Part II: 16,431 (1958). (A/Conf./P/1962).Google Scholar
  135. [36]
    C. C. Grosjean: A High Accuracy Approximation for Solving Multiple Scattering Problems in Infinite Homogeneous Media. Nuovo Cimento 3, 1262 (1956).MathSciNetMATHGoogle Scholar
  136. [37]
    C. C. Grosjean: On a New Approximate One-Velocity Theory of Multiple Scattering in Infinite Homogeneous Media. Nuovo Cimento 4, 582 (1956).MathSciNetMATHGoogle Scholar
  137. [38]
    C. C. Grosjean: Further Development of a New Approximate One-Velocity Theory for Multiple Scattering. Nuovo Cimento 5, 83 (1957).MathSciNetMATHGoogle Scholar
  138. [39]
    K. M. Case: Elementary Solutions of the Transport Equation and Their Applications. Annals of Physics 9, 1 (1960).MathSciNetADSMATHGoogle Scholar
  139. [40]
    K. M. Case and P. F. Zweifel: Linear Transport Theory, Reading, Mass.: Addison-Wesley, 1967.MATHGoogle Scholar
  140. [41]
    N. C. Francis, E. J. Brooks, and R. A. Watson: The Diffusion of Fast Neutrons with Strong Forward Scattering. Trans. Am. Nucl. Soc. 6, 283 (1963).Google Scholar
  141. [42]
    R. J. Bednarz and J. R. Mika: Energy-Dependent Boltzmann Equation in Plane Geometry. J. Math. Phys. 4, 1285 (1963).MathSciNetADSGoogle Scholar
  142. [43]
    P. Lafore and J. P. Millot: Etude de la Diffusion Isotrope des Neutrons. Industries Atomiques 3, 56, 66 (1959).Google Scholar
  143. [44]
    R. Zelazny and A. Kuszell: Two-Group Approach in Transport Theory in Plane Geometry. Annals of Physics 16, 81 (1961).MathSciNetADSMATHGoogle Scholar
  144. [45]
    P. F. Zweifel and J. H. Ferziger: Consistent P1 Criticality Calculations. Nucl. Sci. Eng. 10, 357 (1961).Google Scholar
  145. [46]
    A. M. Weinberg and E. P. Wigner: The Physical Theory of Neutron Chain Reactors, Chicago, Univ. of Chicago, 1958.Google Scholar
  146. [47]
    N. Papmehl: Ein einfaches Verfahren zur Berechnung des Fermi-Alters von leichtem Wasser. Atomkernenergie 5, 357 (1960).Google Scholar
  147. [48]
    K. M. Case, F. DE Hoffman, and G. Placzek: Introduction to the Theory of Neutron Diffusion, Vol. I, Washington, D. C., U. S. G.P.O., 1953.Google Scholar
  148. [49]
    J. R. Mika: Neutron Transport with Anisotropic Scattering. Nucl. Sci. Eng. 11, 415 (1961).Google Scholar
  149. [1]
    D. L. Broder et al.: Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy 13, 55 (1958).Google Scholar
  150. [2]
    S. G. Tsypin: Atomnaja Energija 12, 300 (1962).Google Scholar
  151. [3]
    D. L. Broder et al.: Inrienerno-fiziiieskij zurnal, No. 2, Minsk (1962).Google Scholar
  152. [4]
    D. L. Broder et al.: Biological Shielding of Ships’ Reactors (in Russian), Leningrad: Sudpromgiz 1964.Google Scholar
  153. [5]
    B. I. Sinitsyn and S. G. TsYpin: Atomnaja Energija 12, 306 (1962).Google Scholar
  154. [6]
    L. P. Abagyan et al.: Group Constants for Reactor Calculations (in Russian), Moscow: Gosatomizdat 1964.Google Scholar
  155. [7]
    D. L. Broder et al. in: Neutron Physics (in Russian), Moscow: Gosatomizdat 1961, p. 263.Google Scholar
  156. [8]
    B. T. Price et al.: Radiation Shielding, London: Pergamon Press 1957.Google Scholar
  157. [9]
    TH. Rockwell Iii (Ed.): Reactor Shielding Design Manual, Princeton, N. J.: D. Van Nostrand 1956.Google Scholar
  158. [10]
    H. Goldstein: Fundamental Aspects of Reactor Shielding, Reading, Mass.: Addison-Wesley 1959.Google Scholar
  159. [11]
    R. Aronson and C. N. Klahr in: Reactor Handbook, 2nd Ed., ed. by E. P. Blizard and L. S. Abbott, Vol. Iii, Part B, Ch. 9, New York: Inter-science Publishers 1962.Google Scholar
  160. [12]
    Y. Moteff: Private communication.Google Scholar
  161. [13]
    A. P. Veselkin et al.: Atomnaja Energija 16, 1 (1964).Google Scholar
  162. [14]
    V. K. Daruga et al.: Atomnaja Energija 17, 60 (1964).Google Scholar
  163. [15]
    D. J. Hughes: The Reactor as a Neutron Source. Nucleonics 11, 30 (1953).Google Scholar
  164. [16]
    V. K. Daruga et al.: Atomnaja Energija 17, 145 (1964).Google Scholar
  165. [17]
    A. Kania et al.: Propagation â longue distance des flux de neutrons dans les piles rapides, published in Physics of Fast and Intermediate Reactors, Vol. I, Iaea, Vienna (1962).Google Scholar
  166. [18]
    V. P. Masheovich and S. G. Tsypin: Atomnaja Energija 11, 251 (1961).Google Scholar
  167. [19]
    V. I. Kukhtevich et al. in: Neutron Physics (in Russian), Moscow: Gosatomizdat 1961, p. 278.Google Scholar
  168. [20]
    V. I. Kukhtevich et al.: Atomnaja Energija 5, 565 (1958)Google Scholar
  169. [21]
    B. I. Sinitsyn et al.: Atomnaja Energija 10, 511 (1961).Google Scholar
  170. [22]
    Nucleonics 20,158 (1962).Google Scholar
  171. [23]
    Su. S. Nikolaishvili in: Reactor Physics and Calculations (in Russian), Moscow: Gosatomizdat 1960.Google Scholar
  172. [24]
    D. L. Broder et al.: Atomnaja Energija 7, 313 (1959).Google Scholar
  173. [25]
    I. V. Gordeev et al.: Handbook of Nuclear Physics Constants for Reactor Calculations (in Russian), Moscow: Gosatomizdat 1960.Google Scholar
  174. [26]
    S. P. Belov et al.: Atomnaj a Energija 6, 663 (1959).Google Scholar
  175. [27]
    V. P. Mashkovich et al. in: Questions of Shielding Physics (in Russian), Moscow: Gosatomizdat 1963.Google Scholar
  176. [28]
    V. K. Daruga et al.: Atomnaja Energija 17, 63 (1964).Google Scholar
  177. [29]
    D. L. Broder et al.: Concrete as a Shielding Material (in Russian), Moscow: Atomizdat 1966.Google Scholar
  178. [30]
    Yu. A. Kazanskii et al.: Physical Research in Reactor Shielding, ed. by S. G. Tsypin (in Russian), Moscow: Atomizdat 1966.Google Scholar
  179. [31]
    S. P. Belov et al.: Atomnaja Energija 18, 67 (1965).Google Scholar
  180. [1]
    B. T. Price, C. C. Horton, and I. T. Spinney: Radiation Shielding, London: Pergamon Press 1957, p. 192.Google Scholar
  181. [2]
    R. L. French and M. B. Wells: An Angle-Dependent Albedo for Fast-Neutron-Reflection Calculations. Nucl. Sci. Eng. 19, 441 (1964).Google Scholar
  182. [3]
    R. E. Maerker and F. J. Muckenthaler: Calculation and Measurement of the Fast-Neutron Differential Dose Albedo for Concrete. Nucl. Sci. Eng. 22, 455 (1965).Google Scholar
  183. [4]
    H. Goldstein: Fundamental Aspects of Reactor Shielding, Reading, Mass.: Addison-Wesley 1959, p. 130.Google Scholar
  184. [5]
    M. O. Burrell and D. L. Cribbs: A Monte Carlo Calculation of Neutron Penetrations through Iron Slabs, Vol. Iii, Lockheed Aircraft Corporation, Marietta, Georgia, Report NR-82 (1960).Google Scholar
  185. [6]
    F. J. Allen, A. Futterer, and W. Wright: Neutron Reflection and Flux Versus Depth for Iron, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Report Brl-1199 (1963).Google Scholar
  186. [7]
    M. LeimdÖRfer: The Backscattering of Fast Neutrons from Plane and Spherical Reflectors, Transactions of Chalmers University of Technology, Gothenburg, Sweden, No. 288 (1964).Google Scholar
  187. [8]
    B. J. Hendee Rson: Conversion of Neutron or Gamma Ray Flux to Absorbed Dose Rate, General Electric Company Report Xdc–59–8–179 (1959) ( Micro–fiche available from Reactor Shielding Information Center, Ornl, Oak Ridge, Tenn.).Google Scholar
  188. [9]
    E. S. Troubetzkoy: Fast Neutron Cross Sections of Iron, Silicon, Aluminum, and Oxygen, Nuclear Development Corporation of America, Report Nda 2111–3, Vol. C (Nov. 1, 1959 ).Google Scholar
  189. [10]
    E. S. Troubetzkoy: Fast Neutron Cross Sections of Iron, Silicon, Aluminum, and Oxygen, Nuclear Development Corporation of America, Report Nda 2111–2 (1959).Google Scholar
  190. [11]
    D. L. Kavanagh and C. E. Mandeville: Elastic and Inelastic Neutron Cross Sections, Curtiss-Wright Corporation, Report Cwr-4040 (1958).Google Scholar
  191. [12]
    H. Goldstein: Fundamental Aspects of Reactor Shielding, Reading, Mass.: Addison-Wesley 1959, p. 19.Google Scholar
  192. [13]
    F. J. Allen, A. T. Futterer, and W. P. Wright: Neutron Transmission Versus Thickness for some Common Materials, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Report Brl-1174 (1962).Google Scholar
  193. [14]
    E. S. Troubetzkoy: Fast Neutron Cross Sections of Iron, Silicon, Aluminum, and Oxygen, Nuclear Development Corporation of America, Report Nda 2111–3, Vol. C (1959).Google Scholar
  194. [15]
    J. C. Hopkins and M. G. Silbert: Inelastic Scattering of 2- to 5-MeV Neutrons by Iron. Nucl. Sci. Eng. 19, 431 (1964).Google Scholar
  195. [16]
    F. J. Allen, A. Futterer, and W. Wright: Neutron Reflection and Flux Versus Depth for Concrete, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Report Brl-1189 (1963).Google Scholar
  196. [17]
    F. J. Allen, A. Futterer, and W. Wright: Neutron Reflection and Flux Versus Depth for Nevada Test Site Soil, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Report Brl-1190 (1963).Google Scholar
  197. [18]
    M.H. Kalos, H. Goldstein, and J. Ray: Revised Cross Sections for Neutron Interactions with Oxygen and Deuterium, United Nuclear Corporation, White Plains, N.Y., Report Unc-5038 (Ndltr-40) (1962).Google Scholar
  198. [19]
    R. S. Caswell: Nuclear Optical Model Analysis of Neutron Elastic Scattering for Calcium. J. Res. Nat. Bur. Standards 66A, 389 (1962).Google Scholar
  199. [20]
    E. S. Troubetzkoy: Fast Neutron Cross Sections of Mn, Ca, Sn, Na, Nuclear Development Corporation of America, White Plains, N.Y., Report Nda-2133–4 (1961).Google Scholar
  200. [21]
    Ref. [8,Table Iii].Google Scholar
  201. [22]
    Y. T. Song and C. H. Huddleston: A Semi-empirical Formula for Differential Dose Albedo for Neutrons on Concrete. Trans. Am. Nucl. Soc. 7, No. 2, 364 (1964).Google Scholar
  202. [23]
    J. W. Cure and G. S. HuRsT: Fast-Neutron Scattering: A Correction for Dosimetry. Nucleonics 12, 37 (1954).Google Scholar
  203. [24]
    H. E. Gilbert: Fast Neutron Scattering from Thick, Plane Slabs of Concrete, Aluminum, and Water, Report Aecu-4129 (1958).Google Scholar
  204. [25]
    T. D. Strickler, H. E. Gilbert, and J. A. Auxier: Fast Neutron Scattering from Thick Slabs. Nucl. Sci. Eng. 3, 11 (1957).Google Scholar
  205. [26]
    D. K. Trubey: Monte Carlo Calculation of Neutron Reflection from Water. Oak Ridge National Laboratory, Report Ornl-3193, p. 288 (1961).Google Scholar
  206. [27]
    M. J. Berger and J. W. Cooper: Reflection of Fast Neutrons from Water. J. Res. Nat. Bur. Standards 63, 101 (1959).Google Scholar
  207. [28]
    F. J. Allen, A. Futterer, and W. Wright: Neutron Reflection and Flux Versus Depth for Water, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Report Brl-1204 (1963).Google Scholar
  208. [29]
    P. B. Morgan: The Monte Carlo Method: Neutron Reflection by Water, U.S. Naval Ordnance Laboratory, White Oak, Maryland, Navord Report 6227.Google Scholar
  209. [30]
    A. M. Kogan et al.: The Reflection of Neutrons of Various Energies by Paraffin and Water. Sov. J. At. Energy 7, 865 (1961).Google Scholar
  210. [31]
    J. E. Brolley, Jr., and J. L. Fowler: Mono-energetic Neutron Sources: Reactions with Light Nuclei, Chapter I.C. in “Fast Neutron Physics”, Part I, New York: Interscience Publishers 1960.Google Scholar
  211. [32]
    D. J. Hughes and J. A. Harvey: Neutron Cross Sections, Brookhaven National Laboratory Report Bnl-325, 2nd Ed. (1958).Google Scholar
  212. [33]
    L. Forsberg: Neutron Cross-Sections for Aluminum, AB Atomenergi, Stockholm, Sweden, Report AE-117 (1963).Google Scholar
  213. [34]
    K. Parker: Neutron Cross Sections of 235U and 238U in the Energy Range I keV — 15 MeV, Part I, Atomic Weapons Research Laboratory, Aldermaston, Report Awre 0–79 /63 (1964).Google Scholar
  214. [35]
    M. B. Wells: Reflection of Thermal Neutrons and Neutron-Capture Gamma Rays from Concrete, Radiation Research Associates, Inc., Fort Worth, Texas, Report Rra-M44 (1964). Summary in Trans. Am. Nucl. Soc. 7, 41 (1964).Google Scholar
  215. [36]
    R. E. Maerker and F. J. Muckenthaler: Single-Velocity Calculation and Measurement of Differential Angular Thermal-Neutron Albedos for Concrete. Trans. Am. Nuc. Soc. 8, 2, 647 (1965).Google Scholar
  216. [37]
    W. A. Coleman: A Determination of Intermediate-Energy Neutron Albedo Data for Concrete using Monte Carlo, Oak Ridge National Laboratory, Oak Ridge, Tenn., Report Ornl-TM-1205 (1965).Google Scholar
  217. [38]
    F. J. Allen, A. Futterer, and W. Wright: Dependence of Neutron Albedos Upon Hydrogen Content of a Shield, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Report Brl-1224 (1963).Google Scholar
  218. [39]
    J. A. Belcher: Comparison of Methods of Calculating Fast Neutron Scattering from Beryllium, Atomics International, Div. of North American Aviation, Inc., Canoga Park, Calif., Report Naasr-Memo-9214 (1963).Google Scholar
  219. [40]
    D. R. Doty: An Absolute Measurement of Thermal Neutron Albedo for Several Materials, U.S. Navy Civil Engineering Laboratory, Port Hueneme, Calif., Report Usncel-R-377 (1965).Google Scholar
  220. [41]
    R. E. Maerker: Monte Carlo Determination of the Differential Thermal-Neutron Angular Albedos and Capture-Gamma Dose Rates for Concrete Arising from the Slowing-Down of Incident Intermediate-Energy Neutrons, Oak Ridge National Laboratory, Oak Ridge, Tenn., p. 24 in Report Ornl-3858, Vol. I (1965).Google Scholar
  221. [42]
    L. B. Gardner and A. J. Mettler: Monte Carlo Calculation of Neutron Streaming through TwoLegged-Duct Entranceways, U.S. Navy Civil Engineering Laboratory, Port Hueneme, Calif., Report Usncel-TR-379 (1965). Also available as Astia Document AD-616521 or Usaec Depository Report NP-15094.Google Scholar
  222. [43]
    V. R. Cain: Calculations of Thermal-Neutron Flux Distributions in Concrete-Walled Ducts. Using an Albedo Model with Monte Carlo Techniques, Oak Ridge National Laboratory, Oak Ridge, Tenn., Report Ornl-3513 (1964).Google Scholar
  223. [44]
    A. Simon and C. E. Clifford: The Attenuation of Neutrons by Air Ducts in Shields. Nucl. Sci. Eng. 1, 156 (1956).Google Scholar
  224. [45]
    L. V. Spencer and J. A. Diaz: Neutron Penetration in Ducts and other Cavities, National Bureau of Standards, Washington, D.C., Report Nbs-8541 (1964).Google Scholar
  225. [46]
    L. V. Spencer, J. A. Diaz, and E. Moses: Neutron Penetration in Cylindrical Ducts, National Bureau of Standards, Washington, D.C., Report Nbs-8542 (1964).Google Scholar
  226. [47]
    R. L. French: A First-Last Collision Model of the Air/Ground Interface Effects on Fast-Neutron Distributions. Nucl. Sci. Eng. 19, 151 (1964).Google Scholar
  227. [48]
    F. F. Haywood: Spatial Dose Distribution in Air-Over-Ground Geoinetry. Health Physics 11, 185 (1965).Google Scholar
  228. [49]
    C. Eisenhauer: An Image Source Technique for Calculating Reflection of Gamma Rays or Neutrons. Health Physics 11, 1145 (1965).Google Scholar
  229. [50]
    R. E. Maerker and F. J. Muckenthaler: Differential Fast Neutron Albedos for Concrete, Oak Ridge National Laboratory, Oak Ridge, Tenn., Report Ornl-3822 (1965), Vol. 1: Description of Monte Carlo Calculation and Tsf Experiment and Comparison of Calculated and Experimental Results; Vol. 2–6: Results of Monte Carlo Calculations for Incident Angles of 0, 45, 60, 75, and 85 Degrees.Google Scholar
  230. [1]
    L. JA. Gudkova, S. F. Degtyaryov, V. G. Zolotukhin, and V. I. Kukhtevich in: Bulletin of the Centre for Nuclear Information (in Russian), Part 2, ed. by A. I. Leipunsky et al., Moscow: Atomizdat 1965, p. 346.Google Scholar
  231. [2]
    E. P. Blizard and L. S. Abbott (Eds.): Reactor Handbook, 2nd Ed., Vol. Iii, Part B “Shielding”, New York: Interscience Publishers 1962, p. 268.Google Scholar
  232. [3]
    R. L. French and M. B. Wells: Nucl. Sci. Eng. 19, 441 (1964).Google Scholar
  233. [4]
    F. J. Allen et al.: Neutron Reflection and Flux Versus Depth for Concrete, Brl Report No. 1189 (1963).Google Scholar
  234. [5]
    F. J. Allen et al.: Neutron Reflection and Flux Versus Depth for Nevada Test Site Soil, Brl Report No. 1190 (1963).Google Scholar
  235. [6]
    S. F. Degtyaryov and V. I. Kukhtevich: Chapter in Proceedings: Radiation Physics (in Russian), ed. by D. L. Broder et al., Moscow: Atomizdat 1966 p. 210.Google Scholar
  236. [7]
    H. Gilbert: Fast Neutron Scattering from Thick Plane Slabs on Concrete, Aluminum and Water, Aecu-4126 (1958).Google Scholar
  237. [8]
    T. D. Strickler, H. E. Gilbert, and J. A. Auxier: Nucl. Sci. Eng. 3, 11 (1958).Google Scholar
  238. [9]
    S. F. Degtyaryov and V. I. Kukhtevich in: Bulletin of the Centre for Nuclear Information (in Russian), ed. by A. I. Leipunsky et al., 1st Ed., Moscow: Gosatomizdat 1964, p. 380.Google Scholar
  239. [10]
    L. JA. Gudkova, S. F. Degtyaryov, V. G. Zolotukhin, V. I. Kukhtevich, Yu. I. Bublik, and K. G. Jvanov: Method of Monte Carlo in the Problem of Irradiation Transport (in Russian), ed. by G. I. Marchuk, Moscow: Atomizdat 1967, p. 99.Google Scholar
  240. [1]
    S. Holland, Jr., and P. I. Richards: J. Appl. Phys. 27, 1042 (1956).ADSGoogle Scholar
  241. [2]
    D. Speilberg: Nda 2106–10 (1961).Google Scholar
  242. [3]
    H. A. Sandmeier, G. E. Hansen, R. B. Lazarus, and R. J. Howerton: LA-3415 (1965).Google Scholar
  243. [4]
    J. I. Marcum: RM-2556 (1960).Google Scholar
  244. [5]
    W. A. Biggers, L. J. Brown, and K. C. Kohr: LA-2390 (1960).Google Scholar
  245. [6]
    C. R. Mehl: SC-4174 (TR) (1958).Google Scholar
  246. [7]
    R. H. Ritchie and V. E. Anderson: Private communication [partial results are published in Ornl-3189 (1961)].Google Scholar
  247. [8]
    M. B. Wells: MR-N-197 (1960).Google Scholar
  248. [9]
    M. B. Wells: Nrdl-Ocdm R and L No. 110 NP-10038 (1960).Google Scholar
  249. [10]
    M. B. Wells: Fzk-9–147 (1958).Google Scholar
  250. [11]
    C. D. Zerby: Ornl-2277 (1957).Google Scholar
  251. [12]
    R. R. Coveyou and J. G. Sullivan: Ornl-3016 (1960).Google Scholar
  252. [13]
    M. B. Wells: Fzk-9–150 (1960).Google Scholar
  253. [14]
    M. B. Wells: MR-N-238 (1959).Google Scholar
  254. [15]
    F. L. Keller, C. D. Zerby, and W. W. Dunn: Ornl-2462 (1958).Google Scholar
  255. [16]
    R. E. Beissner: Fzk-9–151 (1961).Google Scholar
  256. [17]
    F. L. Keller, C. D. Zerby, and J. Hilgeman: Ornl-2375 (1958).Google Scholar
  257. [18]
    R. L. French and M. B. Wells: Nucl. Sci. Eng. 19, 441 (1964).Google Scholar
  258. [19]
    R. L. French: Nucl. Sci. Eng. 19, 151 (1964).Google Scholar
  259. [20]
    A. E. Anthony, Jr.: Afswc-TN-61–2 (1961).Google Scholar
  260. [21]
    A. E. Anthony, Jr.: Afswc-TR-61–85 (1961).Google Scholar
  261. [22]
    E. M. Hippeli, D. L. Summers and A. E. Anthony, Jr.: Afswc-TN-60–38 (1960).Google Scholar
  262. [23]
    J. I. Marcum: RM-3531-PR (1963).Google Scholar
  263. [24]
    W. E. Kinney: Ornl-3287 (1962).Google Scholar
  264. [25]
    C. A. Diffey: MR-N-284 (1961).Google Scholar
  265. [26]
    R. L. French: Health Physics 8, 299 (1962).Google Scholar
  266. [27]
    M. B. Wells: Trans. Am. Nucl. Soc. 1, 41 (1964).Google Scholar
  267. [28]
    R. H. Karcher: Nucl. Sci. Eng. 27, 367 (1967).Google Scholar
  268. [29]
    E. A. Straker: Ornl-3973, Vol. 1 (1966).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • W. Selph
  • P. Lafore
  • D. K. Trubey
  • J. Butler
  • A. F. Avery
  • S. G. Tsypin
  • V. I. Kukhtevich
  • H. Gronroos
  • D. L. Broder
  • M. Leimdörfer
  • R. L. French
  • M. B. Wells

There are no affiliations available

Personalised recommendations