Advertisement

Mechanism of Ribulose-Diphosphate Carboxydismutase Reaction

  • F. Fiedler
  • G. Müllhofer
  • A. Trebst
  • I. A. Rose

Abstract

Ribulose-1,5-P 2 labelled with tritium in the C-3 position was converted to 2 moles of phosphoglyceric acid by the carboxydismutase. Over 98 % of the radioactivity was found in the water, less than 0.1 % being in phosphoglyceric acid, indicating that the proton lost from the 3 position of the substrate does not contribute to the formation of product. The tritiated substrate reacts at only 20 % the rate of the normal carrier species. Neither substrate nor product show significant proton exchange with the medium due to the enzyme.

Keywords

Isotope Effect Pyruvate Kinase Tritiated Water Glycerol Kinase Glyceric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müllhofer, G., and Rose, I. A., J. Biol. Chem. 240 (1965) 1341.Google Scholar
  2. 2.
    Calvin, M., J. Chem. Soc. (1956) 1895.Google Scholar
  3. 3.
    Rabin, B. R., and Trown, P. W., Nature, 202 (1964) 1290.PubMedCrossRefGoogle Scholar
  4. 4.
    Simon, H., Dorrer, H. D., and Trebst, A., Z. Naturforsch. 19b (1964) 734.Google Scholar
  5. 5.
    Hurwitz, J., Jakoby, W. B., and Horecker, B. L., Biochim. Biophys. Acta, 22 (1956) 194.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang, S. F., Kawahara, F. S., and Talalay, P., J. Biol. Chem. 238 (1963) 576.PubMedGoogle Scholar
  7. 7.
    Rose, I. A., and O’Connell, E. L., J. Biol. Chem. 236 (1961) 3086.PubMedGoogle Scholar
  8. 8.
    Rognstad, R., Kemp, R. G., and Kratz, J., Arch. Biochem. Biophys. 109 (1965) 372.CrossRefGoogle Scholar
  9. 9.
    Pastore, E. J., and Friedkin, M., J. Biol. Chem. 236 (1961) 2314.PubMedGoogle Scholar
  10. 10.
    Levy, H. R., and Vennesland, B., J. Biol. Chem. 228 (1957) 85.PubMedGoogle Scholar
  11. 11.
    Simon, H., and Steffens, J., Chem. Ber. 95 (1962) 358.CrossRefGoogle Scholar
  12. 12.
    Hurwitz, J., In Methods in Enzymology (edited by S. P. Colowick and O. Kaplan ), Academic Press, New York 1956, Vol. V, p. 258.Google Scholar
  13. 13.
    Racker, E., In Methods in Enzymology (edited by S. P. Colowick and O. Kaplan ), Academic Press, New York 1956, Vol. V, p. 266.Google Scholar
  14. 14.
    Rose, I. A., J. Biol. Chem. 235 (1960) 1170.PubMedGoogle Scholar
  15. 15.
    Eggerer, H., Biochem. Z. 343 (1965) 111.PubMedGoogle Scholar
  16. 16.
    Kaplan, L., J. Am. Chem. Soc. 76 (1954) 4645.CrossRefGoogle Scholar
  17. 17.
    Glasoe, P. K., and Long, F. A., J. Phys. Chem. 64 (1960) 188.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • F. Fiedler
    • 1
    • 2
    • 3
  • G. Müllhofer
    • 1
    • 2
    • 4
  • A. Trebst
    • 1
    • 2
    • 5
  • I. A. Rose
    • 1
    • 2
    • 6
  1. 1.The Institute for Cancer Research PhiladelphiaPennsylvaniaUSA
  2. 2.Abteilung Biochemie der PflanzePflanzenphysiologisches Institut der UniversitätGöttingenGermany
  3. 3.Klinisch-chemisches Institut anChirurgischen Klinik der Universität8 MünchenGermany
  4. 4.Physiologisch-chemisches Institut der Universität8 MünchenGermany
  5. 5.Abteilung Biochemie der PflanzePflanzenphysiologisches Institut der Universität34 GöttingenGermany
  6. 6.Institute for Cancer ResearchPhiladelphiaUSA

Personalised recommendations