Yeast Malate Dehydrogenase: Enzyme Inactivation in Catabolite Repression

  • J. J. FergusonJr.
  • M. Boll
  • H. Holzer


The apparent inactivation of malate dehydrogenase activity in yeast following exposure to glucose has been studied. It was found to be prevented by inhibition of protein synthesis with cycloheximide, by addition of sodium azide, and by chilling the yeast to 0° Kinetic evidence suggests that malate dehydrogenase from acetate-induced and glucose-repressed yeast are different molecular species. Possible mechanisms for “inactivation-repression” are discussed.


MDH for malate dehydrogenase l-Malate: NAD-oxidoreductase (EC 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bechet, J., and Wiame, J. M., Biochem. Biophys. Res. Commun. 21 (1965) 226.PubMedCrossRefGoogle Scholar
  2. 2.
    Bell, E., Humphreys, T., Slayton, H. S., and Hall, C. E., Science 148 (1965) 1739.Google Scholar
  3. 3.
    Gallant, J., and Stapleton, R., J. Mol. Biol. 8 (1964) 431.PubMedCrossRefGoogle Scholar
  4. 4.
    Garen, A., and Garen, S., J. Mol. Biol. 6 (1963) 433.PubMedCrossRefGoogle Scholar
  5. 5.
    Gornall, A. G., Bardawill, C. J., and David, M. M., J. Biol. Chem. 177 (1949) 751.PubMedGoogle Scholar
  6. 6.
    Greig, M. E., Walk, R. A., and Gibbons, A., J. Bacteriol. 75 (1958) 489.PubMedGoogle Scholar
  7. 7.
    Harris, W., and Ferguson, J. J., Jr., unpublished.Google Scholar
  8. 8.
    Jacob, F., and Monod, J., Cold Spring Harbor Symp. Quant. Biol. 26 (1961) 193.Google Scholar
  9. 9.
    Kornberg, A., and Horecker, B. L., In Methods in Enzymology (edited by S. P. Colowick and N. O. Kaplan ), Academic Press, New York 1955, Vol. I, p. 323.Google Scholar
  10. 10.
    Kun, E., and Volfin, P., Biochem. Biophys. Res. Commun. 22 (1966) 187.PubMedCrossRefGoogle Scholar
  11. 11.
    Mandelstam, J., J. Gen. Microbiol. 11 (1954) 426.PubMedCrossRefGoogle Scholar
  12. 12.
    Robertson, J. J., and Halvorson, H. O., J. Bacteriol. 73 (1957) 186.PubMedGoogle Scholar
  13. 13.
    Schimke, R. T., Sweeney, E. W., and Berlin, C. M., J. Biol. Chem. 240 (1965) 322.PubMedGoogle Scholar
  14. 14.
    Spiegelman, S., and Reiner, J. M., J. Gen. Physiol. 31 (1947) 175.PubMedCrossRefGoogle Scholar
  15. 15.
    Stent, G. S., Science 144 (1964) 816.PubMedCrossRefGoogle Scholar
  16. 16.
    Sussman, M., Proc. Natl. Acad. Sci. U. S. 55 (1966) 813.CrossRefGoogle Scholar
  17. 17.
    Umbreit, W. W., Burris, R. H., and Stauffer, J. F., ManometricTechniques, Buress Publishing Co., 1957.Google Scholar
  18. 18.
    Vogel, H. J., In The Chemical’ Basis of Heredity (edited by W. D. McElroy and B. Glass ). The Johns Hopkins Press, Baltimore 1957, p. 279.Google Scholar
  19. 19.
    Witt, I., Kronau, R., and Holzer, H., Biochim. Biophys. Acta 118 (1966) 522.PubMedCrossRefGoogle Scholar
  20. 20.
    Witt, I., Kronau, R., and Holzer, H., Biochim. Biophys. Acta 128 (1965) 63.Google Scholar
  21. 21.
    Wolfe, R. G., and Neilands, J. B., J. Biol. Chem. 221 (1956) 61.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • J. J. FergusonJr.
    • 1
  • M. Boll
    • 2
  • H. Holzer
    • 2
  1. 1.Biochemistry DepartmentUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Biochemisches Institut der Universität78 Freiburg i. Br.Germany

Personalised recommendations