A Protein Sequenator

  • P. Edman
  • G. Begg


The protein sequenator is an instrument for the automatic determination of amino acid sequences in proteins and peptides. It operates on the principle of the phenylisothiocyanate degradation scheme. The automated process embraces the formation of the phenylthiocarbamyl derivative of the protein and the splitting off of the N-terminal amino acid as thiazolinone. The degradation proceeds at a rate of 15.4 cycles in 24 hours and with a yield in the individual cycle in excess of 98%. The material requirements are approximately 0.25 μmoles of protein. The thiazolinones are converted to the corresponding phenylthiohydantoins in a separate operation, and the latter identified by thin layer chromatography. The process has been applied to the whole molecule of apomyoglobin from the humpback whale, and it has been possible to establish the sequence of the first 60 amino acids from the N-terminal end.


Feed Line Humpback Whale Heptafluorobutyric Acid Vacuum Stage Degradation Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Non-standard abbreviations






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Edman, P., Acta Chem. Scand. 10 (1956) 761.CrossRefGoogle Scholar
  2. 2.
    Bethell, D., Metcalfe, G. E., and Sheppard, R. C., Chem. Comm. 10 (1965) 189.Google Scholar
  3. 3.
    Ilse, D., and Edman, P., Australian J. Chem. 16 (1963) 411.CrossRefGoogle Scholar
  4. 4.
    Edman, P., Thromb. et Diath. Haemorrhag. 17 (1963) suppl. 13.Google Scholar
  5. 5.
    Fischer, A., Z. Naturforsch. 9a (1954) 508.Google Scholar
  6. 6.
    Blombäck, B., Blombäck, M., Edman, P., and Hessel, B., Biochim. Biophys. Acta, 115 (1966) 371.PubMedCrossRefGoogle Scholar
  7. 7.
    Elmore, D. T., and Toseland, P. A., J. Chem. Soc. (1956) 188.Google Scholar
  8. 8.
    Edman, P., Proc. Roy. Australian Chem. Inst. (1957) 434.Google Scholar
  9. 9.
    Teremoto, S., and Ishikawa, M., Hakko Kogaku Zasshi, 32 (1954) 350.Google Scholar
  10. 10.
    Kendrew, J. C., and Parrish, R. G., Proc. Roy. Soc. (London), Ser. A, 238 (1957) 305.CrossRefGoogle Scholar
  11. 11.
    Rumen, N. M., Acta Chem. Scand. 13 (1959) 1542.Google Scholar
  12. 12.
    Theorell, H., and Akeson, A., Ann. Acad. Sci. Fennicae Ser. A II, 60 (1954) 303.Google Scholar
  13. 13.
    Edman, P., and Sjöquist, J., Acta Chem. Scand. 10 (1956) 1507.CrossRefGoogle Scholar
  14. 14.
    Honegger, C. G., Heiv. Chim. Acta, 44 (1961) 173.CrossRefGoogle Scholar
  15. 15.
    Edmundson, A. B., Nature, 205 (1965) 883.CrossRefGoogle Scholar
  16. 16.
    Kopple, K. D., and Bächli, E., J. Org. Chem. 24 (1959) 2053.CrossRefGoogle Scholar
  17. 17.
    Sarges, R., and Witkop, B., Biochemistry, 4 (1965) 2491.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1967

Authors and Affiliations

  • P. Edman
    • 1
  • G. Begg
    • 1
  1. 1.St. Vincent’s School of Medical ResearchMelbourneAustralia

Personalised recommendations