Advertisement

Instability Theory

  • Joseph Pedlosky
Part of the Springer study edition book series (SSE)

Abstract

Solar heating is the ultimate energy source for the motion of both the atmosphere and the oceans with the exception of the lunar forcing of the tides. The radiant energy emitted by the sun may vary somewhat over very long periods, but a sensible idealization for most meteorological and oceanographic purposes consists in considering the solar source strength as fixed. Temporal variations in the incident radiation (and its spatial distribution) are then fixed by the astronomical relation between the positions of the earth and sun, e.g., by the seasonal progress of the earth in its solar orbit. Quite clearly, though, the motions of both the atmosphere and the oceans exhibit fluctuations whose time scales are not directly related to the astronomical periodicities of the earth-sun system. The phenomenon of weather in the atmosphere is in fact nothing more than the existence of large-scale wavelike fluctuations in the circulation of the atmosphere whose occurrence cannot be predicted, as the tides can be, by a simple almanac of assured recurrence based on past experience. Observations of oceanic motions have also revealed fluctuations at periods which bear no evident relationship with the astronomical periods which characterize the externally imposed forces.

Keywords

Reynolds Stress Potential Vorticity Phase Speed Zonal Flow Vertical Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

Section 7.1

  1. Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135–163.CrossRefGoogle Scholar
  2. Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1, 33–52.CrossRefGoogle Scholar

Section 7.3

  1. Charney, J. G. and Stern, M. 1962. On the stability of internal baroclinic jets in a rotating atmosphere. J. Atmos. Sci. 19, 159–172.CrossRefGoogle Scholar

Section 7.4

  1. Charney, J. G. and Pedlosky, J. 1963. On the trapping of unstable planetary waves in the atmosphere. J. Geophys. Res. 68, 6441–6442.CrossRefGoogle Scholar
  2. Pedlosky, J. 1964. The stability of currents in the atmosphere and the oceans. Part I. J. Atmos. Sci. 27, 201–219.CrossRefGoogle Scholar

Section 7.5

  1. Howard, L. N. 1961. Note on a paper of John Miles. J. Fluid Mech. 10, 509–512.CrossRefGoogle Scholar
  2. Pedlosky, J. 1964. The stability of currents in the atmosphere and the oceans. Part I. J. Atmos. Sci. 27, 201–219.CrossRefGoogle Scholar

Section 7.6

  1. Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135–163.CrossRefGoogle Scholar
  2. Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1, 33–52.CrossRefGoogle Scholar
  3. Pedlosky, J. 1971. Geophysical fluid dynamics. In Mathematical Problems in the Geophysical Sciences. Ed., W. H. Reid. Amer. Math. Soc. 1–60.Google Scholar

Section 7.7

  1. Eady, E. T. 1949. Long waves and cyclone waves. Tellus 1, 33–52.CrossRefGoogle Scholar
  2. Pedlosky, J. 1964. An initial value problem in the theory of baroclinic instability. Tellus XVI, 12–17.Google Scholar

Section 7.8

  1. Abramowitz, M. and Stegun, I. A. 1964. Handbook of Mathematical Functions. National Bureau of Standards. Chapter 13.Google Scholar
  2. Bretherton, F. P. 1966. Critical layer instability in baroclinic flows. Quart. J. Roy. Meteor. Soc. 92, 325–334.CrossRefGoogle Scholar
  3. Burger, A. P. 1962. On the non-existence of critical wave lengths in a continuous baroclinic stability problem. J. Atmos. Sci. 19, 31–38.CrossRefGoogle Scholar
  4. Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteor. 4, 135–163.CrossRefGoogle Scholar
  5. Garcia, R. V. and Norscini, R. 1970. A contribution to the baroclinic instability problem. Tellus 22, 239–250.CrossRefGoogle Scholar
  6. Gill, A. E. and Green, J. S. A. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. 21, 497–528.Google Scholar
  7. Green, J. S. A. 1960. A problem in baroclinic instability. Quart. J. Roy. Meteor. Soc. 86, 237–251.CrossRefGoogle Scholar
  8. Hildebrand, F. B. 1963. Advanced Calculus for Applications. Prentice-Hall, 646 pp. Chapter 4.Google Scholar
  9. Kuo, H. L. 1952. Three dimensional disturbances in a baroclinic zonal current. J. Meteor. 9, 260–278.CrossRefGoogle Scholar
  10. Kuo, H. L. 1973. Dynamics of quasi-geostrophic flows and instability theory. In Advances in Applied Mechanics 13. 247–330.CrossRefGoogle Scholar
  11. Lin, C. C. 1955. The Theory of Hydrodynamic Instability. Cambridge Univ. Press, 155 pp. Chapter 8.Google Scholar
  12. Miles, J. W. 1964a. A note on Charney’s model of zonal-wind instability. J. Atmos. Sci. 21, 451–452.CrossRefGoogle Scholar
  13. Miles, J. W. 1964b. Baroclinic instability of the zonal wind. Rev. of Geophys. 2, 155–176.CrossRefGoogle Scholar
  14. Miles, J. W. 1964c. Baroclinic instability of the zonal wind. Parts I, II, J. Atmos. Sci. 21, 550–556, 603–609.Google Scholar
  15. Phillips, N. A. (1963) Geostrophic Motion. Rev. of Geophysics 1, 123–176.CrossRefGoogle Scholar

Section 7.9

  1. Held, I. M. 1975. Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci. 32, 1494–1497.CrossRefGoogle Scholar
  2. Phillips, N. A. 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273–286.CrossRefGoogle Scholar

Section 7.10

  1. Pedlosky, J. 1963. Baroclinic instability in two-layer systems. Tellus 15, 20–25.CrossRefGoogle Scholar
  2. Pedlosky, J. 1964. The stability of currents in the atmosphere and the oceans. Part I. J. Atmos. Sci. 27, 201–219.CrossRefGoogle Scholar

Section 7.11

  1. Phillips, N. A. 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273–286.CrossRefGoogle Scholar

Section 7.12

  1. Barcilon, V. 1964. Role of Ekman layers in the stability of the symmetric regime in a rotating annulus. J. Atmos. Sci. 21, 291–299.CrossRefGoogle Scholar

Section 7.13

  1. Gill, A. E., Green, J. S. A., and Simmons, A. J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res. 21, 497–528.Google Scholar
  2. Robinson, A. R. and McWilliams, J. C. 1974. The baroclinic instability of the open ocean. J. Phys. Oceanog. 4, 281–294.CrossRefGoogle Scholar

Section 7.14

  1. Dickinson, R. E. and Clare, F. J. 1973. Numerical study of the unstable modes of a hyperbolic-tangent barotropic shear flow. J. Atmos. Sci. 30, 1035–1049.CrossRefGoogle Scholar
  2. Howard, L. N. and Drazin, P. G. 1964. On instability of parallel flow of inviscid fluid in a rotating system with variable Coriolis parameter. J. Math. Phys. 43, 83–99.Google Scholar
  3. Kuo, H. L. 1949. Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteor. 6, 105–122.CrossRefGoogle Scholar
  4. Kuo, H. L. 1973. Dynamics of quasi-geostrophic flows and instability theory. In Advances in Applied Mechanics 13. 247–330.CrossRefGoogle Scholar

Section 7.15

  1. Brown, J. A. Jr. 1969. A numerical investigation of hydrodynamic instability and energy conversions in the quasigeostrophic atmosphere. Parts I, II. J. Atmos. Sci. 26, 352–365, 366–375.CrossRefGoogle Scholar
  2. Charney, J. G. 1951. On baroclinic instability and the maintenance of the kinetic energy of the westerlies. In Proc. 9th Gen. Assembly, UGGI (Assoc. Meteor.) Brussels. 47–63.Google Scholar
  3. Green, J. S. A. 1970. Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteor. Soc. 96, 157–185.CrossRefGoogle Scholar
  4. Jeffreys, H. 1933. The function of cyclones in the general circulation. In Procès-Verbaux de l’Association de Météorologie, UGGI (Lisbon), Part II. 219–230. Reprinted in Theory of Thermal Convection. Ed., B. Saltzman. Dover, 1962.Google Scholar
  5. Lorenz, E. N. 1967. The Nature and Theory of the General Circulation of the Atmosphere. World Meteorological Organization #218, Geneva, Switzerland.Google Scholar
  6. Pedlosky, J. 1964. The stability of currents in the atmosphere and the ocean: Part II. J. Atmos. Sci. 21, 342–353.CrossRefGoogle Scholar
  7. Schmitz, W. J., Jr. 1977. On the circulation in the western North Atlantic. J. Marine Res. 35, 21–28.Google Scholar
  8. Starr, V. P. 1953. Note concerning the nature of the large scale eddies in the atmosphere. Tellus 5, 494–498.CrossRefGoogle Scholar

Section 7.16

  1. Drazin, P. G. 1970. Non-linear baroclinic instability of a continuous zonal flow. Quart. J. Roy. Meteor. Soc. 96, 667–676.CrossRefGoogle Scholar
  2. Hart, J. E. 1973. On the behavior of large-amplitude baroclinic waves. J. Atmos. Sci. 30, 1017–1034.CrossRefGoogle Scholar
  3. Lorenz, E. N. 1963. The mechanics of vacillation. J. Atmos. Sci. 20, 448–464.CrossRefGoogle Scholar
  4. Pedlosky, J. 1970. Finite amplitude baroclinic waves. J. Atmos. Sci. 27, 15–30.CrossRefGoogle Scholar
  5. Pedlosky, J. 1971. Finite amplitude baroclinic waves with small dissipation. J. Atmos. Sci. 28, 587–597.CrossRefGoogle Scholar
  6. Pedlosky, J. 1972. Limit cycles and unstable baroclinic waves. J. Atmos. Sci. 29, 53–63.CrossRefGoogle Scholar
  7. Pedlosky, J. 1972. Finite amplitude baroclinic wave packets. J. Atmos. Sci. 29, 680–686.CrossRefGoogle Scholar
  8. Phillips, N. A. 1954. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6, 273–286.CrossRefGoogle Scholar
  9. Smith, R. K. and Reilly, J. M. 1977. On a theory of Amplitude Vacillation in Baroclinic Waves: Some Numerical Solutions. J. Atmos. Sci. 34, 1256–1260.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Joseph Pedlosky
    • 1
  1. 1.Woods Hole Oceanographic InstitutionWoods HoleUSA

Personalised recommendations