Skip to main content

Quasigeostrophic Motion of a Stratified Fluid on a Sphere

  • Chapter
Geophysical Fluid Dynamics

Part of the book series: Springer study edition ((SSE))

  • 441 Accesses

Abstract

In Chapter 1 it was noted that variations in density which arise from the differential heating of the atmosphere and oceans are responsible for the circulations of both systems. Even the wind-driven oceanic circulation implicitly requires atmospheric buoyancy forces to produce the wind. In addition, the presence of a stable stratification in which heavier fluid underlies lighter, characteristic of both the atmosphere and the oceans, inhibits vertical motion and strongly affects the nature of the dynamics. It is also clear from the discussion in Section 2.9 that the vertical structure of the winds and currents is directly related to the presence and strength of horizontal density gradients by the thermal wind relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Bibliography

Section 6.2

  • Batchelor, G. K. 1967. An introduction to fluid dynamics, Cambridge University Press (Appendix 2).

    Google Scholar 

  • Phillips, N. A. 1963. Geostrophic motion. Reviews of Geophysics 1, 123–176.

    Article  Google Scholar 

Section 6.3

  • Burger, A. 1958. Scale considerations of planetary motions of the atmosphere. Tellus 10, 195–205.

    Article  Google Scholar 

  • Charney, J. G. 1947. On the Scale of Atmospheric Motions. Geofys. Publikasjoner, Norske Videnskaps-Akad Oslo 17.

    Google Scholar 

  • Charney, J. G. and Drazin, P. G. 1961. Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109.

    Article  Google Scholar 

Section 6.10

  • Lorenz, E. 1955. Available potential energy and the maintenance of the general circulation. Tellus 7, 157–167.

    Article  Google Scholar 

Section 6.12

  • Chapman, S. and Lindzen, R. S. 1970. Atmospheric Tides. Gordon and Breach, 200 pp. Chapter 3.

    Google Scholar 

  • Kundu, P. K., Allen, J. S., and Smith, R. L. 1975. Modal decomposition of the velocity field near the Oregon coast. J. Phys. Oceanog. 5, 683–704.

    Article  Google Scholar 

Section 6.13

  • Holton, J. R. 1975. The dynamic meteorology of the stratosphere and mesosphere. Amer. Meteor. Soc., 216 pp.

    Google Scholar 

  • Smagorinsky, J. 1953. The dynamical influences of large scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc. 79, 342–366.

    Article  Google Scholar 

Section 6.14

  • Andrews, D. G. and McIntyre, M. E. 1976. Planetary waves in horizontal and vertical shear: The generalized Eliassen-Palm relation and the mean zonal acceleration. J. Atmos. Sci. 33, 2031–2048.

    Article  Google Scholar 

  • Benney, D. J. and Bergeron, R. F. 1969. A new class of nonlinear waves in parallel flows. Studies Appl. Math. 48, 181–204.

    Google Scholar 

  • Charney, J. G. and Drazin, P. G. 1961. Propagation of planetary scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 66, 83–109.

    Article  Google Scholar 

  • Eliassen, A. and Palm, E. 1961. On the transfer of energy in stationary mountain waves. Geofys. Publ. 22, 1–23.

    Google Scholar 

  • Smagorinsky, J. 1953. The dynamical influences of large scale heat sources and sinks on the quasi-stationary mean motions of the atmosphere. Quart. J. Roy. Meteor. Soc. 79, 342–366.

    Article  Google Scholar 

Section 6.15

  • Rhines, P. 1970. Edge-, bottom-, and Rossby waves in a rotating stratified fluid. Geophys. Fluid Dyn. 1, 273–302.

    Article  Google Scholar 

Section 6.16

  • Phillips, N. A. 1951. A simple three-dimensional model for the study of large-scale extratropical flow patterns. J. Meteor. 8, 381–394.

    Article  Google Scholar 

Section 6.19

  • Sverdrup, H. U. 1947. Wind-driven currents in a baroclinic ocean; with application to the equatorial currents of the eastern Pacific. Proc. Nat. Acad. Sci. 33, 318–326.

    Article  Google Scholar 

Section 6.21

  • Bryan, K. and Cox, M. D. 1968. A non-linear model of an ocean driven by wind and differential heating. Parts I and II. J. Atmos. Sci. 25, 945–978.

    Article  Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C. 1959. Conduction of Heat in Solids, Oxford Press, 510 pp. 388.

    Google Scholar 

  • Needier, G. T. 1967. A model for thermohaline circulation in an ocean of finite depth. J. Marine Res. 25, 329–342.

    Google Scholar 

  • Robinson, A. R. and Stommel, H. 1959. The oceanic thermocline and the associated thermohaline circulation. Tellus 11, 295–308.

    Google Scholar 

  • Robinson, A. R. and Welander, P. 1963. Thermal circulation on a rotating sphere; with application to the oceanic thermocline. J. Marine Res. 21, 25–38.

    Google Scholar 

  • Welander, P. 1971a. Some exact solutions to the equations describing an ideal-fluid thermocline. J. Mar. Res. 29, 60–68.

    Google Scholar 

  • Welander, P. 1971b. The thermocline problem. Philos. Trans. Royal Soc. Lond. A 270, 69–73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pedlosky, J. (1982). Quasigeostrophic Motion of a Stratified Fluid on a Sphere. In: Geophysical Fluid Dynamics. Springer study edition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-25730-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-25730-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-90745-9

  • Online ISBN: 978-3-662-25730-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics