Elementary mathematics

  • I. N. Bronshtein
  • K. A. Semendyayev


To represent numbers one uses numerical symbols or, more precisely, sequences of numerical symbols (also called numeral sequences), which are formed by juxtaposition of finitely many basic symbols chosen from a finite set.


Normal Form Spherical Triangle Arithmetical Expression Digit Sequence Partial Fraction Decomposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [2.1]
    H. Lenz, Grundlagen der Elementarmathematik, 3rd ed., De Gruyter, Berlin, 1975.Google Scholar

2.2 Combinatorics

  1. [2.2]
    M. Aigner, Combinatorial theory, Springer-Verlag, Berlin-Heidelberg-New York, 1979.CrossRefMATHGoogle Scholar
  2. [2.3]
    D. I. A. Cohen, Basic techniques of combinatorial theory, Wiley, New York-London, 1978.MATHGoogle Scholar
  3. [2.4]
    H. J. Ryser, Combinatorial mathematics, Mathematical Association of America, New York, 1963.MATHGoogle Scholar

2.4 Algebra

  1. [2.5]
    G. Birkhoff and S. MacLane, A survey of modern algebra, 5th ed., Macmillan, London-New York. 1977.MATHGoogle Scholar
  2. [2.6]
    N. Bourbaki, Algebra (translated from the French), Addison-Wesley, Reading, MA, 1974.MATHGoogle Scholar
  3. [2.7]
    P. M. Cohn, Algebra, 2 vols., 2nd ed., Wiley, New York-London, 1982.MATHGoogle Scholar
  4. [2.8]
    F. R. Gantmacher, Matrix theory (translated from the Russian), 2 vols., Chelsea, New York, 1960.Google Scholar
  5. [2.9]
    N. Jacobson, Lectures in abstract algebra, 3 vols., 3rd ed., Van Nostrand Reinhold, New York, 1974.Google Scholar
  6. [2.10]
    N. Jacobson, Basic algebra, 2 vols., Freeman, San Francisco, 1980.MATHGoogle Scholar
  7. [2.11]
    A. G. Kurosh, Lectures on general algebra (translated from the Russian), Chelsea, New York, 1965.Google Scholar
  8. [2.12]
    S. Lang, Algebra, Addison-Wesley, Reading MA, 1964.Google Scholar
  9. [2.13]
    S. Lang, Linear algebra, Addison-Wesley, Reading, MA, 1973.Google Scholar
  10. [2.14]
    M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities, Allyn and Bacon, Boston, MA, 1961.Google Scholar
  11. [2.15]
    S. Noble and I. W. Daniel, Applied linear algebra, Prentice Hall, Englewood Cliffs, NJ, 1977.MATHGoogle Scholar
  12. [2.16]
    B. L. van der Waerden, Modern algebra (translated from the German), 2 vols., 3rd ed., Ungar, New York, 1967.Google Scholar

2.6 Geometry

  1. [2.18]
    W. Abbott, Practical geometry and engineering graphics, 8th ed., Blackie, London-Glasgow, 1971.CrossRefGoogle Scholar
  2. [2.19]
    H. G. Ayre, R. Stephens, and G. D. Mock, Analytic geometry, 2nd ed., Van Nostrand Reinhold, New York-London, 1967.Google Scholar
  3. [2.20]
    A. Barton, An introduction to coordinate geometry, University of London Press, London, 1958.Google Scholar
  4. [2.21]
    H. S. M. Coxeter, Introduction to geometry, Wiley, New York-London, 1961.MATHGoogle Scholar
  5. [2.22]
    N. V. Efimov, An elementary course in analytical geometry (translated from the Russian), 2 vols., Pergamon, Oxford, 1966.Google Scholar
  6. [2.23]
    L. P. Eisenhart, Coordinate geometry, Dover, New York, 1960.MATHGoogle Scholar
  7. [2.24]
    M. L. Keedy and C. W. Nelson, Geometry—a modern introduction, Addison-Wesley, Reading, MA, 1965.Google Scholar
  8. [2.25]
    E. A. Maxwell, Elementary coordinate geometry, Cambridge University Press, Cambridge, 1954.Google Scholar
  9. [2.26]
    K. L. Nielsen and J. H. Vanlonkhuyzen, Plane and spherical trigonometry, Barnes and Noble, New York, 1960.Google Scholar
  10. [2.27]
    S. M. Slaby, Fundamentals of three-dimensional descriptive geometry, Harcourt-Brace, New York-Chicago, 1966.Google Scholar
  11. [2.28]
    D. M. Y. Sommerville, Analytical geometry of three dimensions, Cambridge University Press, Cambridge, 1934.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 1979

Authors and Affiliations

  • I. N. Bronshtein
  • K. A. Semendyayev

There are no affiliations available

Personalised recommendations